Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 208-216.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1400
Previous Articles Next Articles
ZHAO Xue-ting1(), GAO Li-yan2, WANG Jun-gang2, SHEN Qing-qing1, ZHANG Shu-zhen2(), LI Fu-sheng1()
Received:
2022-11-14
Online:
2023-06-26
Published:
2023-07-07
Contact:
ZHANG Shu-zhen, LI Fu-sheng
E-mail:1421389929@qq.com;zhangsz2007@163.com;lfs810@sina.com
ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein[J]. Biotechnology Bulletin, 2023, 39(6): 208-216.
Fig. 5 Prediction of secondary structure of ShERF3 in sugarcane The blue is α-helix; red is extended- strand; green is beta turn; purple is random coil
Fig. 7 Expression analysis of ShERF3 gene in different parts of ‘ROC22’ IL: Immature leaves; ML: mature leaves; S1: stem node 1-2; S2: stem node 4-5; S3: stem node 7-8; S4: stem node 10-11; S5: stem node 12-13; S6: stem node 14-15; Rs: root system. Different lowercases indicate significant differences at the 0.05 level. The same below
[1] |
Venkataramana S, Gururaja Rao PN, Naidu KM. The effects of water stress during the formative phase on stomatal resistance and leaf water potential and its relationship with yield in ten sugarcane varieties[J]. Field Crops Res, 1986, 13: 345-353.
doi: 10.1016/0378-4290(86)90035-3 URL |
[2] |
Cha-um S, Chuencharoen S, Mongkolsiriwatana C, et al. Screening sugarcane(Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis[J]. Plant Cell Tiss Organ Cult, 2012, 110(1): 23-33.
doi: 10.1007/s11240-012-0126-9 URL |
[3] | 陈玉凤, 李竹, 苏炜华, 等. 甘蔗AP2/ERF基因家族的鉴定及表达[J]. 应用与环境生物学报, 2022, 28(1): 67-81. |
Chen YF, Li Z, Su WH, et al. Identification and expression analysis of AP2/ERF gene family in sugarcane[J]. Chin J Appl Environ Biol, 2022, 28(1): 67-81. | |
[4] |
徐超华, 李纯佳, 苏火生, 等. 甘蔗非生物胁迫抗性研究进展[J]. 植物遗传资源学报, 2017, 18(3): 483-493.
doi: 10.13430/j.cnki.jpgr.2017.03.013 |
Xu CH, Li CJ, Su HS, et al. Progress in the studies on abiotic stress resistance of sugarcane(Saccharum spp.)[J]. J Plant Genet Resour, 2017, 18(3): 483-493. | |
[5] |
Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA, 1997, 94(13): 7076-7081.
doi: 10.1073/pnas.94.13.7076 pmid: 9192694 |
[6] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[7] |
Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1[J]. Genes Dev, 1998, 12(8): 1145-1154.
doi: 10.1101/gad.12.8.1145 URL |
[8] |
Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science, 2003, 301(5633): 653-657.
doi: 10.1126/science.1086391 pmid: 12893945 |
[9] |
Hu YX, Wang YX, Liu XF, et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J]. Cell Res, 2004, 14(1): 8-15.
doi: 10.1038/sj.cr.7290197 |
[10] |
Sohn KH, Lee SC, Jung HW, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J]. Plant Mol Biol, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0 pmid: 16927203 |
[11] |
Thomashow MF. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599.
doi: 10.1146/arplant.1999.50.issue-1 URL |
[12] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2): 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[13] |
Hao DY, Yamasaki K, Sarai A, et al. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs[J]. Biochemistry, 2002, 41(13): 4202-4208.
doi: 10.1021/bi015979v URL |
[14] |
Pirrello J, Prasad BC, Zhang WS, et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene[J]. BMC Plant Biol, 2012, 12: 190.
doi: 10.1186/1471-2229-12-190 pmid: 23057995 |
[15] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783 URL |
[16] | 张静. 逆境胁迫下玉米DNA去甲基化酶和AP2/ERF基因家族的全基因组鉴定与分析[D]. 芜湖: 安徽师范大学, 2020. |
Zhang J. Genome-wide identification and analysis of maize DNA demethylase and AP2/ERF gene family under stress[D]. Wuhu: Anhui Normal University, 2020. | |
[17] |
Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1[J]. Genes Dev, 1998, 12(23): 3703-3714.
doi: 10.1101/gad.12.23.3703 URL |
[18] |
Benavente LM, Alonso JM. Molecular mechanisms of ethylene signaling in Arabidopsis[J]. Mol BioSyst, 2006, 2(3/4): 165-173.
doi: 10.1039/b513874d URL |
[19] | Chang KN, Zhong S, Weirauch MT, et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis[J]. eLife, 2013, 2: 00675. |
[20] |
Cheng MC, Liao PM, Kuo WW, et al. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals[J]. Plant Physiol, 2013, 162(3): 1566-1582.
doi: 10.1104/pp.113.221911 URL |
[21] |
Klay I, Gouia S, Liu MC, et al. Ethylene response factors(ERF)are differentially regulated by different abiotic stress types in tomato plants[J]. Plant Sci, 2018, 274: 137-145.
doi: 10.1016/j.plantsci.2018.05.023 URL |
[22] |
Huang ZJ, Zhang ZJ, Zhang XL, et al. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J]. FEBS Lett, 2004, 573(1/2/3): 110-116.
doi: 10.1016/j.febslet.2004.07.064 URL |
[23] |
Zhang HW, Huang ZJ, Xie BY, et al. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta, 2004, 220(2): 262-270.
doi: 10.1007/s00425-004-1347-x URL |
[24] |
Wu LJ, Chen XL, Ren HY, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4): 815-825.
doi: 10.1007/s00425-007-0528-9 pmid: 17479283 |
[25] |
Song CP, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses[J]. Plant Cell, 2005, 17(8): 2384-2396.
doi: 10.1105/tpc.105.033043 URL |
[26] |
Li JJ, Guo X, Zhang MH, et al. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis[J]. Plant Sci, 2018, 270: 131-139.
doi: 10.1016/j.plantsci.2018.01.017 URL |
[27] |
Zhao MJ, Yin LJ, Liu Y, et al. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean[J]. BMC Plant Biol, 2019, 19(1): 506.
doi: 10.1186/s12870-019-2066-6 |
[28] |
Tian ZD, He Q, Wang HX, et al. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato[J]. Plant Cell Physiol, 2015, 56(5): 992-1005.
doi: 10.1093/pcp/pcv025 URL |
[29] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[30] |
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7): 1565-1572.
doi: 10.1038/nprot.2007.199 |
[31] |
Xu ZS, Chen M, Li LC, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. J Integr Plant Biol, 2011, 53(7): 570-585.
doi: 10.1111/jipb.2011.53.issue-7 URL |
[32] |
Zhang ZJ, Li F, Li DJ, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought[J]. Planta, 2010, 232(3): 765-774.
doi: 10.1007/s00425-010-1208-8 URL |
[33] |
Pan Y, Seymour GB, Lu CG, et al. An ethylene response factor(ERF5)promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31(2): 349-360.
doi: 10.1007/s00299-011-1170-3 pmid: 22038370 |
[34] |
Dey S, Corina Vlot A. Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants[J]. Front Plant Sci, 2015, 6: 640.
doi: 10.3389/fpls.2015.00640 pmid: 26379679 |
[35] | 史红飞, 高翔, 陈其皎, 等. 小麦NAC转录因子的基因克隆与序列分析[J]. 麦类作物学报, 2011, 31(3): 395-401. |
Shi HF, Gao X, Chen QJ, et al. Genes cloning and sequences analysis of NAC transcription factor in wheat[J]. J Triticeae Crops, 2011, 31(3): 395-401. | |
[36] |
Casu RE, Dimmock CM, Chapman SC, et al. Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling[J]. Plant Mol Biol, 2004, 54(4): 503-517.
doi: 10.1023/B:PLAN.0000038255.96128.41 URL |
[37] |
Rong W, Qi L, Wang AY, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnol J, 2014, 12(4): 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105 |
[38] | 翟莹, 张军, 赵艳, 等. 大豆ERF转录因子基因GmERF8的克隆与表达分析[J]. 植物遗传资源学报, 2016, 17(6): 1036-1040. |
Zhai Y, Zhang J, Zhao Y, et al. Cloning and expression analysis of ERF transcription factor GmERF8 in soybean(Glycine max L.)[J]. J Plant Genet Resour, 2016, 17(6): 1036-1040. | |
[39] |
Zhuang J, Jiang HH, Wang F, et al. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis[J]. Plant Mol Biol Rep, 2013, 31(6): 1336-1345.
doi: 10.1007/s11105-013-0610-3 URL |
[40] |
Wang FJ, Wang CL, Liu PQ, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): e0154027.
doi: 10.1371/journal.pone.0154027 URL |
[41] |
鲁琳, 赵希胜, 刘桂雲, 等. 花烟草NaERF1基因的克隆及在非生物胁迫下的表达模式分析[J]. 生物技术通报, 2020, 36(1): 1-8.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0550 |
Lu L, Zhao XS, Liu GY, et al. Cloning and expression profile analysis of NaERF1 under abiotic stresses in Nicotiana alata[J]. Biotechnol Bull, 2020, 36(1): 1-8.. |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | LI Xin-yi, JIANG Chun-xiu, XUE Li, JIANG Hong-tao, YAO Wei, DENG Zu-hu, ZHANG Mu-qing, YU Fan. Enhancing Hybridization Signal of Sugarcane Chromosome Oligonucleotide Probe via Multiple Fluorescence Labeled Primers [J]. Biotechnology Bulletin, 2023, 39(5): 103-111. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[8] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[9] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[10] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[11] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[12] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[15] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||