Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 199-207.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0758
Previous Articles Next Articles
KONG De-zhen1(), DUAN Zhen-yu1, WANG Gang1, ZHANG Xin1(), XI Lin-qiao2
Received:
2022-06-22
Online:
2023-06-26
Published:
2023-07-07
Contact:
ZHANG Xin
E-mail:kongdezhen1746@163.com;zhangx0322@126.com
KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress[J]. Biotechnology Bulletin, 2023, 39(6): 199-207.
Fig. 2 Effects of different saline and alkali concentrations on the physiological characteristics of Sorghum bicolor×S. sudanense Different letters mean significant difference at 0. 05 level
[1] | 武玉芬. 小麦耐盐碱性评价与分子标记研究[D]. 石家庄: 河北科技大学, 2011. |
Wu YF. Assessment and molecular markers of saline-alkali tolerance in wheats[D]. Shijiazhuang: Hebei University of Science and Technology, 2011. | |
[2] | 金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响[J]. 草业科学, 2017, 34(10): 2090-2098. |
Jin WW, Zhang HH, Teng ZY, et al. Effects of salt and alkali interaction stress on chlorophyll fluorescence in leaves of Sorghum bicolor × S. sudanense[J]. Pratacultural Sci, 2017, 34(10): 2090-2098. | |
[3] |
Parihar P, Singh S, Singh R, et al. Effect of salinity stress on plants and its tolerance strategies: a review[J]. Environ Sci Pollut Res, 2015, 22(6): 4056-4075.
doi: 10.1007/s11356-014-3739-1 URL |
[4] |
Acosta-Motos J, Ortuño M, Bernal-Vicente A, et al. Plant responses to salt stress: adaptive mechanisms[J]. Agronomy, 2017, 7(1): 18.
doi: 10.3390/agronomy7010018 URL |
[5] | 温莹, 逯晓萍, 任锐, 等. 高丹草EST-SSR标记的开发及其遗传多样性[J]. 遗传, 2013, 35(2): 225-232. |
Wen Y, Lu XP, Ren R, et al. Development of EST-SSR marker and genetic diversity analysis in Sorghum bicolor × Sorghum sudanenes[J]. Hereditas, 2013, 35(2): 225-232.
doi: 10.1111/j.1601-5223.1949.tb03335.x URL |
|
[6] | 李源, 游永亮, 赵海明, 等. 种植密度对高丹草农艺性状及饲用品质的影响[J]. 草业科学, 2017, 34(8): 1686-1693. |
Li Y, You YL, Zhao HM, et al. Effect of plant density on agronomic traits and forage quality for Sorghum bicolor × S. sudanense[J]. Pratacultural Sci, 2017, 34(8): 1686-1693. | |
[7] |
李源, 谢楠, 赵海明, 等. 不同高丹草品种对干旱胁迫的响应及抗旱性评价[J]. 草地学报, 2010, 18(6): 891-896.
doi: 10.11733/j.issn.1007-0435.2010.06.026 |
Li Y, Xie N, Zhao HM, et al. Evaluations of drought resistance among different Sorghum bicolor × S. sudanense varieties[J]. Acta Agrestia Sin, 2010, 18(6): 891-896. | |
[8] |
李燕青, 孙文彦, 许建新, 等. 华北盐碱地耐盐经济作物筛选[J]. 华北农学报, 2013, 28(S1): 227-232.
doi: 10.7668/hbnxb.2013.S1.042 |
Li YQ, Sun WY, Xu JX, et al. The evaluation of salt tolerant cash crops in Northern China[J]. Acta Agric Boreali Sin, 2013, 28(S1): 227-232. | |
[9] |
张晓艳, 刘锋, 王风云, 等. 施氮对杂交苏丹草植株硝态氮累积及产量的影响[J]. 草地学报, 2009, 17(3): 327-332.
doi: 10.11733/j.issn.1007-0435.2009.03.012 |
Zhang XY, Liu F, Wang FY, et al. Effects of nitrogen application on nitrate nitrogen accumulation and forage yield of Sorghum bicolor × S. sudanense[J]. Acta Agrestia Sin, 2009, 17(3): 327-332. | |
[10] | 田祺, 张会慧, 孙广玉. 高丹草种子萌发和幼苗生长对模拟盐碱互作胁迫的响应[J]. 安徽农业科学, 2014, 42(6): 1707-1710, 1736. |
Tian Q, Zhang HH, Sun GY. Effects of simulated salt and alkali interaction stress on the germination and seedlings growth at germination stage of Sorghum bicolor × S. sudanense seeds[J]. J Anhui Agric Sci, 2014, 42(6): 1707-1710, 1736. | |
[11] | 高立杰, 刘玉玉, 吴春会, 等. 盐分与温度对高丹草种子萌发的影响[J]. 家畜生态学报, 2017, 38(7): 61-65. |
Gao LJ, Liu YY, Wu CH, et al. Effects of salinity and temperature on seed germination of Sorghum × Sudan grass[J]. J Domest Animal Ecol, 2017, 38(7): 61-65. | |
[12] | 王飞, 刘林波, 高天歌, 等. 转录组学在牧草上的应用进展[J]. 草业科学, 2019, 36(2): 402-413. |
Wang F, Liu LB, Gao TG, et al. Research advances on transcriptomics in forage plants[J]. Pratacultural Sci, 2019, 36(2): 402-413. | |
[13] |
Ma Q, Bao AK, Chai WW, et al. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress[J]. Plant Soil, 2016, 402(1): 343-361.
doi: 10.1007/s11104-016-2809-1 URL |
[14] |
黄洁, 孙其松, 吴晓静, 等. 花后不同时期模拟酸雨对小麦叶片光合作用和抗氧化系统的影响[J]. 核农学报, 2015, 29(9): 1782-1790.
doi: 10.11869/j.issn.100-8551.2015.09.1782 |
Huang J, Sun QS, Wu XJ, et al. Effects of simulated acid rain at different grain development stage on photosynthetic and antioxidant system[J]. J Nucl Agric Sci, 2015, 29(9): 1782-1790.
doi: 10.11869/j.issn.100-8551.2015.09.1782 |
|
[15] |
周拥军, 郜海燕, 陈杭君, 等. 减压贮藏对杏鲍菇采后活性氧代谢的影响[J]. 核农学报, 2015, 29(6): 1108-1113.
doi: 10.11869/j.issn.100-8551.2015.06.1108 |
Zhou YJ, Gao HY, Chen HJ, et al. Effects of hypobaric storage on reactive oxygen species metabolism of Pleurotus eryngii during cold storage[J]. J Nucl Agric Sci, 2015, 29(6): 1108-1113. | |
[16] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[17] | 李菡, 郭兴启. 生物化学实验技术原理和方法[M]. 北京: 高等教育出版社, 2006: 104-105. |
Li H, Guo XQ. Principles and methods of biochemical experiment technology[M]. Beijing: Higher Education Press, 2006: 104-105. | |
[18] |
潘教文, 李臻, 王庆国, 等. NaCl处理谷子萌发期种子的转录组学分析[J]. 中国农业科学, 2019, 52(22): 3964-3976.
doi: 10.3864/j.issn.0578-1752.2019.22.003 |
Pan JW, Li Z, Wang QG, et al. Transcriptomics analysis of NaCl response in foxtail millet(Setaria italica L.) seeds at germination stage[J]. Sci Agric Sin, 2019, 52(22): 3964-3976. | |
[19] | 林选栋, 武文莉, 林丽果, 等. 不同盐胁迫水平下硅对高羊茅幼苗生物量、酶活性和渗透调节物质的影响[J]. 草业科学, 2018, 35(7): 1653-1660. |
Lin XD, Wu WL, Lin LG, et al. Effect of silicon supplies on biomass and antioxidase and osmolytes of tall fescue seedlings under different salt concentration conditions[J]. Pratacultural Sci, 2018, 35(7): 1653-1660. | |
[20] |
Yuan F, Lyu MJ A, Leng BY, et al. The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland[J]. Plant Mol Biol, 2016, 91(3): 241-256.
doi: 10.1007/s11103-016-0460-0 URL |
[21] | 赵怀玉, 林鸿宣. 植物响应盐碱胁迫的分子机制[J]. 土壤与作物, 2020, 9(2): 103-113. |
Zhao HY, Lin HX. Molecular mechanism of plants in responses to salt and alkali stress[J]. Soils Crops, 2020, 9(2): 103-113. | |
[22] | 于成志, 王爽, 刘建萍, 等. 盐胁迫对干制辣椒生长和生理特性的影响[J]. 北方园艺, 2015(15): 7-11. |
Yu CZ, Wang S, Liu JP, et al. Effect of salt stress on growth and physiological characteristics of dry pepper[J]. North Hortic, 2015(15): 7-11. | |
[23] | 成铁龙, 李焕勇, 武海雯, 等. 盐胁迫下4种耐盐植物渗透调节物质积累的比较[J]. 林业科学研究, 2015, 28(6): 826-832. |
Cheng TL, Li HY, Wu HW, et al. Comparison on osmotica accumulation of different salt-tolerant plants under salt stress[J]. For Res, 2015, 28(6): 826-832. | |
[24] | 扎桑, 王玉林, 原红军, 等. 盐碱胁迫下青稞全转录组分析[J]. 西南农业学报, 2021, 34(7): 1375-1385. |
Zhasang, Wang YL, Yuan HJ, et al. Transcriptome analysis of Tibetan hulless barley under salt-alkali stress[J]. Southwest China J Agric Sci, 2021, 34(7): 1375-1385. | |
[25] |
Sohrabi Y, Heidari G, Weisany W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1): 5-18.
doi: 10.1007/s13199-012-0152-8 URL |
[26] | 乔佩, 卢存福, 李红梅, 等. 盐胁迫对诱变小麦种子萌发及幼苗生理特性的影响[J]. 中国生态农业学报, 2013, 21(6): 720-727. |
Qiao P, Lu CF, Li HM, et al. Influence of salt on seed germination and seedling physiological characteristics of mutagenic wheat[J]. Chin J Eco Agric, 2013, 21(6): 720-727.
doi: 10.3724/SP.J.1011.2013.00720 URL |
|
[27] | 徐微风, 覃和业, 刘姣, 等. 冰菜在不同浓度海水胁迫下的氧化胁迫和抗氧化酶活性变化[J]. 江苏农业学报, 2017, 33(4): 775-781. |
Xu WF, Qin HY, Liu J, et al. Changes of oxidative stress and antioxidant enzyme activity of Mesembryanthemum crystallinum Linnaeus in response to different concentrations of seawater[J]. Jiangsu J Agric Sci, 2017, 33(4): 775-781. | |
[28] | 赵江涛, 李晓峰, 李航, 等. 可溶性糖在高等植物代谢调节中的生理作用[J]. 安徽农业科学, 2006, 34(24): 6423-6425, 6427. |
Zhao JT, Li XF, Li H, et al. Research on the role of the soluble sugar in the regulation of physiological metabolism in higher plant[J]. J Anhui Agric Sci, 2006, 34(24): 6423-6425, 6427. | |
[29] | 宋士伟, 焦德志, 杨允菲. 东北草地野大麦对混合盐碱胁迫的生理响应及转录组分析[J]. 草业科学, 2019, 36(5): 1379-1388. |
Song SW, Jiao DZ, Yang YF. Physiological response and transcriptome analysis of Hordeum brevisubulatum under mixed salt and alkaline stress[J]. Pratacultural Sci, 2019, 36(5): 1379-1388. |
[1] | LIN Hong-yan, GUO Xiao-rui, LIU Di, LI Hui, LU Hai. Molecular Mechanism of Transcriptional Factor AtbHLH68 in Regulating Cell Wall Development by Transcriptome Analysis [J]. Biotechnology Bulletin, 2023, 39(9): 105-116. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[4] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[5] | XIE Yang, XING Yu-meng, ZHOU Guo-yan, LIU Mei-yan, YIN Shan-shan, YAN Li-ying. Transcriptome Analysis of Diploid and Autotetraploid in Cucumber Fruit [J]. Biotechnology Bulletin, 2023, 39(3): 152-162. |
[6] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[7] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[8] | XU Jun, YE Yu-qing, NIU Ya-jing, HUANG He, ZHANG Meng-meng. Transcriptome Analysis of Rhizome Development in Chrysanthemum× × morifolium [J]. Biotechnology Bulletin, 2023, 39(10): 231-245. |
[9] | RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis [J]. Biotechnology Bulletin, 2023, 39(1): 150-156. |
[10] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[11] | XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways [J]. Biotechnology Bulletin, 2022, 38(6): 198-210. |
[12] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[13] | XIONG He-li, SHA Qian, LIU Shao-na, XIANG De-cai, ZHANG Bin, ZHAO Zhi-yong. Application of Single-cell Transcriptome Sequencing in Animals [J]. Biotechnology Bulletin, 2022, 38(3): 226-233. |
[14] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[15] | GUAN Yi, LI Xin, WANG Ding-yi, DU Xi, ZHANG Long-bin, YE Xiu-yun. Functional Study of BbRho5 on the Growth Rate of Beauveria bassiana [J]. Biotechnology Bulletin, 2022, 38(2): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||