Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 43-51.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0504
Previous Articles Next Articles
WANG Tian-yi(), WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei(), ZHAO Jiu-ran()
Received:
2023-05-26
Online:
2023-08-26
Published:
2023-09-05
Contact:
SONG Wei, ZHAO Jiu-ran
E-mail:wangtianyi0709@163.com;songwei1007@126.com;maizezhao@126.com
WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding[J]. Biotechnology Bulletin, 2023, 39(8): 43-51.
基因Gene | 全称Full name | 分子机制Molecular mechanism |
---|---|---|
An1[ | Anther ear1 | 赤霉素生物合成 Gibberellin biosynthesis |
An2[ | Anther ear2 | 赤霉素生物合成 Gibberellin biosynthesis |
Br2[ | Brachytic2 | 生长素极性运输 Polar auxin transport |
Brd1[ | Brassinosteroid-deficient dwarf1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
BRI1a[ | Brassinosteroid insensitive1a | 油菜素内酯信号转导 Brassinosteroid signaling |
Bv1[ | Brevis plant1 | 生长素信号转导 Auxin transport |
Cr4[ | Crinkly4 | 激素信号转导 Hormone signaling |
Ct2[ | Compact plant2 | 赤霉素生物合成 Gibberellin biosynthesis |
D1[ D2[ D3[ D5[ D8[ D8-1023[ D9[ | Dwarf plant1 Dwarf plant 2 Dwarf plant 3 Dwarf plant 5 Dwarf plant 8 Dwarf8-1023 Dwarf plant9 | 赤霉素合成最后一步 The final step of bioactive GA synthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素信号转导 Gibberellin signaling 赤霉素生物合成 Gibberellin biosynthesis 赤霉素信号转导 Gibberellin signaling |
D11[ | Dwarf11 | 赤霉素生物合成 Gibberellin biosynthesis |
D2003[ | Dwarf2003 | 调控分生组织发育Regulate meristem development |
Dil1[ | Dwarf & irregular leaf1 | 转录因子调控,影响激素通路基因表达Regulation of transori ptin factyr, affect the expression of genes related to hormonal pathways |
GID1[ | Gibberellin-insensitive dwarf1 | 赤霉素信号转导Gibberellin signaling |
Kn1[ | Knotted1 | 调控赤霉素分解代谢 Regulate of gibberellin catabolism |
Lil1[ | Lilliputian1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
Na1[ | Nana plant1 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Na2[ | Nana plant2 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Rd2 Sdw3[ | Reduced plant2 Semidwarf3 | 赤霉素信号响应 Responds to gibberellin 乙烯生物合成 Ethylene biosynthesis |
Tan1[ | Tangled1 | 调控细胞骨架排布Regulates cytoskeleton arrangement |
Td1[ Te1[ | Thick tassel dwarf1 Terminal ear1 | CLV-WUS途径 CLV-WUS pathway 生长素运输途径 Auxin transport pathway |
Vt2[ | Vanishing tassel2 | 生长素合成途径 Auxin biosynthesis pathway |
ZmCCD8[ | Carotenoid cleavage dioxygenase8 | 独脚金内酯合成途径 Strigolactone biosynthesis pathway |
ZmGLR[ | Glutamic acid and lysine-rich | 油菜素内酯和生长素共同调控 Both brassinosteroid and auxin regulate |
ZmGRF10[ | Growth-regulating factors10 | 转录因子,影响多种生物学途径 Transcription factor, affect multiple biological pathways |
ZmPIN1a[ | PIN-formed1a | 生长素极性运输 Polar auxin transport |
ZmPHYC[ ZmRPH1[ | Phytochrome C Reducing plant height1 | 响应光周期 Response photoperiod 微管细胞骨架排布 Microtubule cytoskeleton arrangement |
Table1 Cloned genes related to dwarf maize
基因Gene | 全称Full name | 分子机制Molecular mechanism |
---|---|---|
An1[ | Anther ear1 | 赤霉素生物合成 Gibberellin biosynthesis |
An2[ | Anther ear2 | 赤霉素生物合成 Gibberellin biosynthesis |
Br2[ | Brachytic2 | 生长素极性运输 Polar auxin transport |
Brd1[ | Brassinosteroid-deficient dwarf1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
BRI1a[ | Brassinosteroid insensitive1a | 油菜素内酯信号转导 Brassinosteroid signaling |
Bv1[ | Brevis plant1 | 生长素信号转导 Auxin transport |
Cr4[ | Crinkly4 | 激素信号转导 Hormone signaling |
Ct2[ | Compact plant2 | 赤霉素生物合成 Gibberellin biosynthesis |
D1[ D2[ D3[ D5[ D8[ D8-1023[ D9[ | Dwarf plant1 Dwarf plant 2 Dwarf plant 3 Dwarf plant 5 Dwarf plant 8 Dwarf8-1023 Dwarf plant9 | 赤霉素合成最后一步 The final step of bioactive GA synthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素信号转导 Gibberellin signaling 赤霉素生物合成 Gibberellin biosynthesis 赤霉素信号转导 Gibberellin signaling |
D11[ | Dwarf11 | 赤霉素生物合成 Gibberellin biosynthesis |
D2003[ | Dwarf2003 | 调控分生组织发育Regulate meristem development |
Dil1[ | Dwarf & irregular leaf1 | 转录因子调控,影响激素通路基因表达Regulation of transori ptin factyr, affect the expression of genes related to hormonal pathways |
GID1[ | Gibberellin-insensitive dwarf1 | 赤霉素信号转导Gibberellin signaling |
Kn1[ | Knotted1 | 调控赤霉素分解代谢 Regulate of gibberellin catabolism |
Lil1[ | Lilliputian1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
Na1[ | Nana plant1 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Na2[ | Nana plant2 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Rd2 Sdw3[ | Reduced plant2 Semidwarf3 | 赤霉素信号响应 Responds to gibberellin 乙烯生物合成 Ethylene biosynthesis |
Tan1[ | Tangled1 | 调控细胞骨架排布Regulates cytoskeleton arrangement |
Td1[ Te1[ | Thick tassel dwarf1 Terminal ear1 | CLV-WUS途径 CLV-WUS pathway 生长素运输途径 Auxin transport pathway |
Vt2[ | Vanishing tassel2 | 生长素合成途径 Auxin biosynthesis pathway |
ZmCCD8[ | Carotenoid cleavage dioxygenase8 | 独脚金内酯合成途径 Strigolactone biosynthesis pathway |
ZmGLR[ | Glutamic acid and lysine-rich | 油菜素内酯和生长素共同调控 Both brassinosteroid and auxin regulate |
ZmGRF10[ | Growth-regulating factors10 | 转录因子,影响多种生物学途径 Transcription factor, affect multiple biological pathways |
ZmPIN1a[ | PIN-formed1a | 生长素极性运输 Polar auxin transport |
ZmPHYC[ ZmRPH1[ | Phytochrome C Reducing plant height1 | 响应光周期 Response photoperiod 微管细胞骨架排布 Microtubule cytoskeleton arrangement |
[1] |
Ranum P, Peña-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption[J]. Ann N Y Acad Sci, 2014, 1312: 105-112.
doi: 10.1111/nyas.2014.1312.issue-1 URL |
[2] | 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示[J]. 玉米科学, 2009, 17(5): 156-159, 163. |
Zhao JR, Wang RH. Factors promoting the steady increase of American maize production and their enlightenments for China[J]. J Maize Sci, 2009, 17(5): 156-159, 163. | |
[3] |
王文秀, 王磊. 玉米矮杆基因研究进展[J]. 生物技术通报, 2018, 34(11): 22-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0444 |
Wang WX, Wang L. Research progress on maize dwarf genes[J]. Biotechnol Bull, 2018, 34(11): 22-26. | |
[4] |
Sher A, Khan A, Ashraf U, et al. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk[J]. Front Plant Sci, 2018, 9: 1047.
doi: 10.3389/fpls.2018.01047 pmid: 30254649 |
[5] | Duvick DN, Smith JSC, Cooper M. Long-term selection in a commercial hybrid maize breeding program[M]//Plant Breeding Reviews. Oxford, UK: John Wiley & Sons, Inc., 2010: 109-151. |
[6] |
Zhao Y, Huang YX, Gao YJ, et al. An EMS-induced allele of the brachytic2 gene can reduce plant height in maize[J]. Plant Cell Rep, 2023, 42(4): 749-761.
doi: 10.1007/s00299-023-02990-2 pmid: 36754893 |
[7] |
Peiffer JA, Romay MC, Gore MA, et al. The genetic architecture of maize height[J]. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905 |
[8] | 阎淑琴. 矮生玉米的遗传与育种[J]. 玉米科学, 2000, 8(2): 36-37, 45. |
Yan SQ. Inheritance and breeding of dwarf maize[J]. Maize Sci, 2000, 8(2): 36-37, 45. | |
[9] | 石云素, 于永涛, 宋燕春, 等. 一个新矮生玉米种质资源的发现与遗传鉴定[J]. 植物遗传资源学报, 2008, 9(4): 521-524. |
Shi YS, Yu YT, Song YC, et al. Discovery and genetic identification of a new dwarf germplasm in maize[J]. J Plant Genet Resour, 2008, 9(4): 521-524. | |
[10] |
Multani DS, Briggs SP, Chamberlin MA, et al. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84.
doi: 10.1126/science.1086072 pmid: 14526073 |
[11] |
Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of the maize An1 gene[J]. Plant Cell, 1995, 7(1): 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880 |
[12] |
Harris LJ, Saparno A, Johnston A, et al. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase[J]. Plant Mol Biol, 2005, 59(6): 881-894.
doi: 10.1007/s11103-005-1674-8 pmid: 16307364 |
[13] |
Makarevitch I, Thompson A, Muehlbauer GJ, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798 URL |
[14] |
Kir G, Ye HX, Nelissen H, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiol, 2015, 169(1): 826-839.
doi: 10.1104/pp.15.00367 pmid: 26162429 |
[15] |
Avila LM, Cerrudo D, Swanton C, et al. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize[J]. J Exp Bot, 2016, 67(5): 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748 |
[16] |
Becraft PW, Stinard PS, McCarty DR. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273(5280): 1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079 |
[17] |
Bommert P, Je BI, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size[J]. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583 |
[18] |
Chen Y, Hou MM, Liu LJ, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4): 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[19] |
Fujioka S, Yamane H, Spray CR, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L[J]. Plant Physiol, 1988, 88(4): 1367-1372.
doi: 10.1104/pp.88.4.1367 pmid: 16666468 |
[20] |
Winkler RG, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis[J]. Plant Cell, 1995, 7(8): 1307-1317.
doi: 10.1105/tpc.7.8.1307 pmid: 7549486 |
[21] |
Lawit SJ, Wych HM, Xu DP, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant Cell Physiol, 2010, 51(11): 1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[22] |
Cassani E, Bertolini E, Badone FC, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene[J]. Mol Breeding, 2009, 24(4): 375-385.
doi: 10.1007/s11032-009-9298-3 URL |
[23] | Wang YJ, Deng DX, Ding HD, et al. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11(D11)mutant phenotype: physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6): e66466. |
[24] |
Lyu HK, Zheng J, Wang TY, et al. The maize d2003, a novel allele of VP8, is required for maize internode elongation[J]. Plant Mol Biol, 2014, 84(3): 243-257.
doi: 10.1007/s11103-013-0129-x pmid: 24214124 |
[25] |
Jiang FK, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize[J]. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040 URL |
[26] |
Yamaguchi I, Nakajima M, Park SH. Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1[J]. Biosci Biotechnol Biochem, 2016, 80(6): 1029-1036.
doi: 10.1080/09168451.2016.1148575 URL |
[27] |
Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1[J]. Plant Cell, 2009, 21(6): 1647-1658.
doi: 10.1105/tpc.109.068221 URL |
[28] |
Castorina G, Persico M, Zilio M, et al. The maize Lilliputian1(lil1)gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response[J]. Ann Bot, 2018, 122(2): 227-238.
doi: 10.1093/aob/mcy047 URL |
[29] |
Hartwig T, Chuck GS, Fujioka S, et al. Brassinosteroid control of sex determination in maize[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275 |
[30] |
Best NB, Hartwig T, Budka J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiol, 2016, 171(4): 2633-2647.
doi: 10.1104/pp.16.00399 URL |
[31] |
Li HC, Wang LJ, Liu MS, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiol, 2020, 183(3): 1184-1199.
doi: 10.1104/pp.19.01421 URL |
[32] |
Cleary AL, Smith LG. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development[J]. Plant Cell, 1998, 10(11): 1875-1888.
pmid: 9811795 |
[33] |
Bommert P, Lunde, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671 pmid: 15716347 |
[34] |
Wang FX, Yu ZP, Zhang ML, et al. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize[J]. Plant Biotechnol J, 2022, 20(3): 526-537.
doi: 10.1111/pbi.v20.3 URL |
[35] |
Phillips KA, Skirpan AL, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize[J]. Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267 URL |
[36] |
Guan JC, Koch KE, Suzuki M, et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Plant Physiol, 2012, 160(3): 1303-1317.
doi: 10.1104/pp.112.204503 pmid: 22961131 |
[37] |
Wang CC, Zhang H, Xia Q, et al. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize[J]. Plant Sci, 2019, 289: 110248.
doi: 10.1016/j.plantsci.2019.110248 URL |
[38] |
Wu L, Zhang DF, Xue M, et al. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11): 1053-1063.
doi: 10.1111/jipb.12220 URL |
[39] |
Li ZX, Zhang XR, Zhao YJ, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height[J]. Plant Biotechnol J, 2018, 16(1): 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064 |
[40] |
Li QQ, Wu GX, Zhao YP, et al. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height[J]. Plant Biotechnol J, 2020, 18(12): 2520-2532.
doi: 10.1111/pbi.v18.12 URL |
[41] |
Li W, Ge FH, Qiang ZQ, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height[J]. Plant Biotechnol J, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.13292 pmid: 31696605 |
[42] |
Ku LX, Zhang LK, Tian ZQ, et al. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize(Zea mays L.)[J]. Mol Genet Genomics, 2015, 290(4): 1223-1233.
doi: 10.1007/s00438-014-0987-1 URL |
[43] |
Salas Fernandez MG, Becraft PW, Yin YH, et al. From dwarves to giants? Plant height manipulation for biomass yield[J]. Trends Plant Sci, 2009, 14(8): 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467 |
[44] |
Yin XF, Bi YQ, Jiang FY, et al. Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population[J]. Front Plant Sci, 2022, 13: 963985.
doi: 10.3389/fpls.2022.963985 URL |
[45] |
Sa KJ, Choi IY, Park JY, et al. Mapping of QTL for agronomic traits using high-density SNPs with an RIL population in maize[J]. Genes Genomics, 2021, 43(12): 1403-1411.
doi: 10.1007/s13258-021-01169-x |
[46] |
Zhang HW, Wang X, Pan QC, et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples[J]. Mol Plant, 2019, 12(3): 426-437.
doi: S1674-2052(18)30385-X pmid: 30597214 |
[47] |
Wang XQ, Zhang RY, Song W, et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle(UAV)[J]. Sci Rep, 2019, 9(1): 3458.
doi: 10.1038/s41598-019-39448-z |
[48] |
Adak A, Conrad C, Chen YY, et al. Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes[J]. G3, 2021, 11(6): jkab075.
doi: 10.1093/g3journal/jkab075 URL |
[49] |
Li YH, Han S, Qi YH. Advances in structure and function of auxin response factor in plants[J]. J Integr Plant Biol, 2023, 65(3): 617-632.
doi: 10.1111/jipb.13392 |
[50] |
Knöller AS, Blakeslee JJ, Richards EL, et al. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems[J]. J Exp Bot, 2010, 61(13): 3689-3696.
doi: 10.1093/jxb/erq180 pmid: 20581123 |
[51] |
王夏青, 宋伟, 张如养, 等. 玉米茎秆抗倒伏遗传的研究进展[J]. 中国农业科学, 2021, 54(11): 2261-2272.
doi: 10.3864/j.issn.0578-1752.2021.11.002 |
Wang XQ, Song W, Zhang RY, et al. Genetic research advances on maize stalk lodging resistance[J]. Sci Agric Sin, 2021, 54(11): 2261-2272.
doi: 10.3864/j.issn.0578-1752.2021.11.002 |
|
[52] |
Davière JM, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6): 1147-1151.
doi: 10.1242/dev.087650 URL |
[53] |
Wang YL, Wang X, Deng DX, et al. Maize transcriptomic repertoires respond to gibberellin stimulation[J]. Mol Biol Rep, 2019, 46(4): 4409-4421.
doi: 10.1007/s11033-019-04896-3 pmid: 31144186 |
[54] |
Wu K, Xu H, Gao XH, et al. New insights into gibberellin signaling in regulating plant growth-metabolic coordination[J]. Curr Opin Plant Biol, 2021, 63: 102074.
doi: 10.1016/j.pbi.2021.102074 URL |
[55] |
Teng F, Zhai LH, Liu RX, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize[J]. Plant J, 2013, 73(3): 405-416.
doi: 10.1111/tpj.12038 URL |
[56] |
Zhang JJ, Zhang XF, Chen RR, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9[J]. Front Plant Sci, 2020, 11: 1048.
doi: 10.3389/fpls.2020.01048 URL |
[57] |
Zhao BL, Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. J Integr Plant Biol, 2012, 54(10): 746-759.
doi: 10.1111/j.1744-7909.2012.01168.x |
[58] |
Planas-Riverola A, Gupta A, Betegón-Putze I, et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development, 2019, 146(5): dev151894.
doi: 10.1242/dev.151894 URL |
[59] |
Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200.
doi: 10.1038/nature07272 |
[60] | 田齐建, 乔治军, 董存吉, 等. 玉米矮化育种研究进展及发展前景[J]. 山西农业科学, 2003, 31(2): 23-26. |
Tian QJ, Qiao ZJ, Dong CJ, et al. Review on research of maize breeding for dwarfness and its development prospect[J]. J Shanxi Agric Sci, 2003, 31(2): 23-26. | |
[61] | Duvick D. Genetic progress in yield of United States maize(Zea mays L.)[J]. Maydica, 2005, 50(3):193-202. |
[62] | 崔绍平. 玉米br-2矮生基因型杂交种矮单268的选育[J]. 中国种业, 2014(12): 68-69. |
Cui SP. Breeding of maize Br-2 dwarf genotype hybrid Aidan 268[J]. China Seed Ind, 2014(12): 68-69. | |
[63] |
Wei L, Zhang X, Zhang ZH, et al. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture[J]. Heredity, 2018, 121(1): 75-86.
doi: 10.1038/s41437-018-0056-3 |
[64] |
Li C, Tang J, Hu ZY, et al. A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight[J]. Plant Cell Rep, 2020, 39(3): 393-408.
doi: 10.1007/s00299-019-02498-8 pmid: 31834482 |
[65] | 姜惟廉, 郭日跻, 刘元芝, 等. 玉米优异核心种质资源多基因矮生系5003及其姊妹系5005创制[J]. 玉米科学, 2013, 21(5): 1-5, 12. |
Jiang WL, Guo RJ, Liu YZ, et al. Innovation and application of elite maize line 5003 with dwarf character controlled by multigenic genes[J]. J Maize Sci, 2013, 21(5): 1-5, 12. | |
[66] |
Liu SL, Zhang M, Feng F, et al. Toward a “green revolution” for soybean[J]. Mol Plant, 2020, 13(5): 688-697.
doi: 10.1016/j.molp.2020.03.002 URL |
[67] |
Hedden P. The genes of the green revolution[J]. Trends Genet, 2003, 19(1): 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[68] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702.
doi: 10.1038/416701a |
[69] |
Davies WP. An historical perspective from the Green Revolution to the gene revolution[J]. Nutr Rev, 2003, 61(6 Pt 2):S124-S134.
doi: 10.1301/nr.2003.jun.S124-S134 pmid: 12908744 |
[70] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[5] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[6] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[7] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[8] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[9] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[10] | LEI Cai-rong, GUO Xiao-peng, CHAI Ran, ZHANG Miao-miao, REN Jun-le, LU Dong. Application of Omics Techniques in Incluced Breecling via Heavy Ion Beam Irradiating Microorganisms [J]. Biotechnology Bulletin, 2023, 39(5): 54-62. |
[11] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[12] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[13] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[14] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[15] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||