Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 225-235.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0148
Previous Articles Next Articles
ZHOU Ai-ting1(), PENG Rui-qi1, WANG Fang1(), WU Jian-rong1,2, MA Huan-cheng1()
Received:
2023-02-22
Online:
2023-09-26
Published:
2023-10-24
Contact:
WANG Fang, MA Huan-cheng
E-mail:Zhouat2022@163.com;fangerfriend2021@163.com;mhc@swfu.edu.cn
ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages[J]. Biotechnology Bulletin, 2023, 39(9): 225-235.
通路ID KEGG ID | 通路名称 Map_Name | 上调代谢物数量 Up-numb | 下调代谢物数量 Down-numb | P值 P-value | 重要性 Significance |
---|---|---|---|---|---|
ko04974 | 蛋白质消化和吸收Protein digestion and absorption | 8 | 11 | 1.04582E-14 | 0.3830 |
ko00970 | 氨酰tRNA生物合成Aminoacyl-tRNA biosynthesis | 4 | 10 | 2.37618E-08 | 0.2500 |
ko01230 | 氨基酸的生物合成Biosynthesis of amino acids | 8 | 11 | 5.8421E-06 | 0.2759 |
ko02010 | ABC转运蛋白ABC transporters | 5 | 12 | 0.001180783 | 0.2174 |
ko01210 | 2-氧羰基酸代谢2-Oxocarboxylic acid metabolism | 8 | 7 | 0.001180783 | 0.2174 |
Table 1 Differential metabolites in 5 metabolic pathways
通路ID KEGG ID | 通路名称 Map_Name | 上调代谢物数量 Up-numb | 下调代谢物数量 Down-numb | P值 P-value | 重要性 Significance |
---|---|---|---|---|---|
ko04974 | 蛋白质消化和吸收Protein digestion and absorption | 8 | 11 | 1.04582E-14 | 0.3830 |
ko00970 | 氨酰tRNA生物合成Aminoacyl-tRNA biosynthesis | 4 | 10 | 2.37618E-08 | 0.2500 |
ko01230 | 氨基酸的生物合成Biosynthesis of amino acids | 8 | 11 | 5.8421E-06 | 0.2759 |
ko02010 | ABC转运蛋白ABC transporters | 5 | 12 | 0.001180783 | 0.2174 |
ko01210 | 2-氧羰基酸代谢2-Oxocarboxylic acid metabolism | 8 | 7 | 0.001180783 | 0.2174 |
序号No. | KEGG ID | 代谢物名称Metabolic name | 类别Category |
---|---|---|---|
1 | C00062 | 精氨酸 Arginine | 氨基酸Amino acid |
2 | C00099 | β-丙氨酸 Beta-alanine | |
3 | C00025 | 谷氨酸 Glutamic acid | |
4 | C00148 | DL-脯氨酸 DL-proline | |
5 | C00188 | DL-苏氨酸 DL-threonine | |
6 | C00078 | DL-色氨酸 DL-tryptophan | |
7 | C00082 | DL-酪氨酸 DL-tyrosine | |
8 | C00183 | DL-缬氨酸 DL-valine | |
9 | C00037 | 甘氨酸 Glycine | |
10 | C00407 | 异亮氨酸 Isoleucine | |
11 | C00049 | L-天冬氨酸 L-aspartic acid | |
12 | C00123 | 亮氨酸 Leucine | |
13 | C00047 | 赖氨酸 Lysine | |
14 | C00079 | 苯丙氨酸 Phenylalanine | |
15 | C00233 | 酮亮氨酸 Ketoleucine | |
16 | C00624 | N-乙酰-l-谷氨酸 N-acetyl-l-glutamate | |
17 | C00437 | N-α-乙酰-l-鸟氨酸 N-.alpha.-acetyl-l-ornithine | |
18 | C00246 | 丁酸 Butanoic acid | 有机酸 Organic acids |
19 | C00163 | 丙酸 Propionic acid | |
20 | C00956 | 2-氨基己二酸 2-aminoadipic acid | |
21 | C08262 | 异戊酸 Isovaleric acid | |
22 | C01606 | 邻苯二甲酸 1,2-benzenedicarboxylic acid | |
23 | C01251 | 高柠檬酸盐 Homocitrate | / |
24 | C00146 | 苯酚 Phenol | / |
25 | C00212 | 腺苷 Adenosine | / |
26 | C00140 | N-乙酰-d-氨基葡萄糖 N-acetyl-d-glucosamine | / |
27 | C06687 | 诺氟沙星 Norfloxacin | / |
28 | C00378 | 硫胺素 Thiamine | / |
Table 2 Differential metabolite analysis of five metabolic pathways
序号No. | KEGG ID | 代谢物名称Metabolic name | 类别Category |
---|---|---|---|
1 | C00062 | 精氨酸 Arginine | 氨基酸Amino acid |
2 | C00099 | β-丙氨酸 Beta-alanine | |
3 | C00025 | 谷氨酸 Glutamic acid | |
4 | C00148 | DL-脯氨酸 DL-proline | |
5 | C00188 | DL-苏氨酸 DL-threonine | |
6 | C00078 | DL-色氨酸 DL-tryptophan | |
7 | C00082 | DL-酪氨酸 DL-tyrosine | |
8 | C00183 | DL-缬氨酸 DL-valine | |
9 | C00037 | 甘氨酸 Glycine | |
10 | C00407 | 异亮氨酸 Isoleucine | |
11 | C00049 | L-天冬氨酸 L-aspartic acid | |
12 | C00123 | 亮氨酸 Leucine | |
13 | C00047 | 赖氨酸 Lysine | |
14 | C00079 | 苯丙氨酸 Phenylalanine | |
15 | C00233 | 酮亮氨酸 Ketoleucine | |
16 | C00624 | N-乙酰-l-谷氨酸 N-acetyl-l-glutamate | |
17 | C00437 | N-α-乙酰-l-鸟氨酸 N-.alpha.-acetyl-l-ornithine | |
18 | C00246 | 丁酸 Butanoic acid | 有机酸 Organic acids |
19 | C00163 | 丙酸 Propionic acid | |
20 | C00956 | 2-氨基己二酸 2-aminoadipic acid | |
21 | C08262 | 异戊酸 Isovaleric acid | |
22 | C01606 | 邻苯二甲酸 1,2-benzenedicarboxylic acid | |
23 | C01251 | 高柠檬酸盐 Homocitrate | / |
24 | C00146 | 苯酚 Phenol | / |
25 | C00212 | 腺苷 Adenosine | / |
26 | C00140 | N-乙酰-d-氨基葡萄糖 N-acetyl-d-glucosamine | / |
27 | C06687 | 诺氟沙星 Norfloxacin | / |
28 | C00378 | 硫胺素 Thiamine | / |
[1] |
李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3)204-212
doi: 10.11686/cyxb20150321 |
Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sin, 2015, 24(3)204-212 | |
[2] |
Romanazzi G, Feliziani E, Baños SB, et al. Shelf life extension of fresh fruit and vegetables by chitosan treatment[J]. Crit Rev Food Sci Nutr, 2017, 57(3): 579-601.
pmid: 26047630 |
[3] |
Wu YJ, Lin HT, Lin YF, et al. Effects of biocontrol bacteria Bacillus amyloliquefaciens LY-1 culture broth on quality attributes and storability of harvested litchi fruit[J]. Postharvest Biol Technol, 2017, 132: 81-87.
doi: 10.1016/j.postharvbio.2017.05.021 URL |
[4] |
Kiran GS, Priyadharsini S, Sajayan A, et al. An antibiotic agent pyrrolo[1, 2-a]pyrazine-1, 4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus[J]. RSC Adv, 2018, 8(32): 17837-17846.
doi: 10.1039/C8RA00820E URL |
[5] |
Li H, Guan Y, Dong YL, et al. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae[J]. PLoS One, 2018, 13(10): e0203505.
doi: 10.1371/journal.pone.0203505 URL |
[6] |
Zhou H, Zhu HJ, Ren ZH, et al. Efficacy of Bacillus tequilensis strain JN-369 to biocontrol of rice blast and enhance rice growth[J]. Biol Control, 2021, 160: 104652.
doi: 10.1016/j.biocontrol.2021.104652 URL |
[7] |
Shultana R, Zuan ATK, Yusop MR, et al. Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress[J]. PLoS One, 2021, 16(12): e0260869.
doi: 10.1371/journal.pone.0260869 URL |
[8] | 李偲奇. 不同料型日粮对育肥羊生产性能、胃肠道微生物组和代谢组的影响研究[D]. 泰安: 山东农业大学, 2020. |
Li SQ. Effects of diets types on performance, gastrointestinal microbiome and metabolome of fattening lambs[D]. Tai'an: Shandong Agricultural University, 2020. | |
[9] |
范乐乐, 郭妍, 赵雪, 等. 淡紫紫孢菌微菌核发酵滤液生防活性及代谢组学分析[J]. 中国生物防治学报, 2022, 38(4): 821-830.
doi: 10.16409/j.cnki.2095-039x.2022.04.008 |
Fan LL, Guo Y, Zhao X, et al. Biocontrol activities and metabolome analysis of microsclerotia fermentation filtrate of Purpureocillium lilacinum[J]. Chin J Biol Control, 2022, 38(4): 821-830. | |
[10] | 杜青平, 王倩, 曹立创, 等. 悬浮物变化引起细菌JS17生长曲线的波动规律[J]. 广东工业大学学报, 2012, 29(3): 77-80. |
Du QP, Wang Q, Cao LC, et al. A study of bacterium growth curve and suspended matter in the medium[J]. J Guangdong Univ Technol, 2012, 29(3): 77-80. | |
[11] |
李雪萍, 张怡忻, 李建军, 等. 兰州百合防病促生细菌筛选及其效果评价[J]. 中国生物防治学报, 2022, 38(5)1296-1307.
doi: 10.16409/j.cnki.2095-039x.2022.06.008 |
Li XP, Zhang YX, Li JJ, et al. Screening of disease-control and growth-promoting bacteria and their effecs on Lanzhou lily[J]. Chin J Biol Control, 2022, 38(5)1296-1307. | |
[12] | 王春梅, 张杰, 陈浩, 等. 丁香酚对灰霉病菌的抑制活性及对菌丝形态的影响[J]. 江西农业学报, 2008, 20(10)72-75. |
Wang CM, Zhang J, Chen H, et al. Inhibition activity of eugenol to Botrytis cinerea and its effects on mycelial morphology[J]. Acta Agric Jiangxi, 2008, 20(10)72-75. | |
[13] | 金学平, 唐启明, 余磊, 等. 氨基酸衍生物——一类安全性能好的抗菌剂[J]. 化学与生物工程, 2019, 36(11)8-11. |
Jin XP, Tang QM, Yu L, et al. Amino acid derivatives—a kind of antibacterial agent with high safety[J]. Chem Bioeng, 2019, 36(11)8-11. | |
[14] | 曾令杰, 丰丕雪, 黄锦翔, 等. 基于非靶向代谢组学分析酿酒酵母甲酸胁迫的响应和耐受性机制[J]. 食品科学, 2022, 43(4)95-104. |
Zeng LJ, Feng PX, Huang JX, et al. Non-targeted metabolomic analysis of response and tolerance mechanism of Saccharomyces cerevisiae to formic acid stress[J]. Food Sci, 2022, 43(4)95-104. | |
[15] |
Grant CM, MacIver FH, Dawes IW. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeastSaccharomyces cerevisiae[J]. Curr Genet, 1996, 29(6): 511-515.
doi: 10.1007/BF02426954 pmid: 8662189 |
[16] |
Nocek BP, Gillner DM, Fan Y, et al. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L, L-diaminopimelic acid desuccinylase[J]. J Mol Biol, 2010, 397(3): 617-626.
doi: 10.1016/j.jmb.2010.01.062 URL |
[17] |
Colabroy KL, Begley TP. Tryptophan catabolism: identification and characterization of a new degradative pathway[J]. J Bacteriol, 2005, 187(22): 7866-7869.
pmid: 16267312 |
[18] |
Lv LX, Yan R, Shi HY, et al. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01[J]. J Proteom, 2017, 150: 216-229.
doi: 10.1016/j.jprot.2016.08.021 URL |
[19] |
Chen YN, Chi WC, Trinh NN, et al. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings[J]. PLoS One, 2014, 9(5): e95163.
doi: 10.1371/journal.pone.0095163 URL |
[20] | 张琳, 杨轲, 汪军成, 等. 不同致病性的麦根腐平脐蠕孢菌代谢组学分析[J]. 山西农业科学, 2021, 49(12)1453-1461. |
Zhang L, Yang K, Wang JC, et al. Metabolome analysis of different pathogenicity Bipolaris sorokiniana strains[J]. J Shanxi Agric Sci, 2021, 49(12)1453-1461. | |
[21] |
Takagi H, Iwamoto F, Nakamori S. Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants[J]. Appl Microbiol Biotechnol, 1997, 47(4): 405-411.
pmid: 9163955 |
[22] |
Cheng YF, Du ZL, Zhu H, et al. Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress[J]. Sci Rep, 2016, 6: 31311.
doi: 10.1038/srep31311 |
[23] | 孟露, 刘晗诚, 刘雅涵, 等. 基于代谢组学和转录组学分析工业面包酵母(Saccharomyces cerevisiae)ABY3冷冻胁迫应答机制[J]. 食品科学, 2021, 42(10): 193-200. |
Meng L, Liu HC, Liu YH, et al. Metabolomic and transcriptomic analysis of response mechanism of baker’s yeast to freezing stress[J]. Food Sci, 2021, 42(10): 193-200.
doi: 10.1111/jfds.1977.42.issue-1 URL |
|
[24] | 张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42(3):323-328. |
Zhang J, Tian ZG, Wang JH, et al. Advances in antimicrobial molecular mechanism of organic acids[J]. Chin J Animal Vet Sci, 2011, 42(3):323-328. | |
[25] |
Warth AD. Effect of benzoic acid on glycolytic metabolite levels and intracellular pH in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1991, 57(12): 3415-3417.
doi: 10.1128/aem.57.12.3415-3417.1991 URL |
[26] | 张丹丹, 姜修婷. 乌梅有机酸的提取工艺及其抑菌活性[J]. 生物加工过程, 2018, 16(3): 47-52. |
Zhang DD, Jiang XT. Extraction and antibacterial activity of Fructus mume organic acids[J]. Chin J Bioprocess Eng, 2018, 16(3): 47-52. | |
[27] |
Corsetti A, Gobbetti M, Rossi J, et al. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1[J]. Appl Microbiol Biotechnol, 1998, 50(2): 253-256.
pmid: 9763693 |
[28] |
Wang HK, Yan YH, Wang JM, et al. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J]. PLoS One, 2012, 7(1): e29452.
doi: 10.1371/journal.pone.0029452 URL |
[29] | 户红通, 徐达, 徐庆阳, 等. 谷氨酸清洁发酵工艺研究[J]. 中国酿造, 2018, 37(10)51-56. |
Hu HT, Xu D, Xu QY, et al. Study on clean fermentation process of glutamic acid[J]. China Brew, 2018, 37(10)51-56. | |
[30] | 张晓娟, 窦文芳, 许泓瑜, 等. 维生素对谷氨酸棒杆菌SYPS-062直接发酵合成L-丝氨酸的影响[J]. 中国生物工程杂志, 2007, 27(5): 50-55. |
Zhang XJ, Dou WF, Xu HY, et al. Effects of vitamins on the direct fermentative production of L-serine in Corynebacterium glutamicum SYPS-062[J]. China Biotechnol, 2007, 27(5): 50-55. | |
[31] | 孙鹏杰, 余子辰, 徐庆阳. B族维生素对枯草芽孢杆菌发酵生产腺苷的影响[J]. 中国酿造, 2022, 41(4)93-98. |
Sun PJ, Yu ZC, Xu QY. Effect of vitamin B on adenosine production by Bacillus subtilis fermentation[J]. China Brew, 2022, 41(4)93-98. | |
[32] | 王春茹, 郭晓风, 单胜艳. 天然型N-乙酰-D-氨基葡萄糖的生理功效及市场前景[J]. 食品研究与开发, 2014, 35(2): 131-134. |
Wang CR, Guo XF, Shan SY. The market prospects and physiological function of natural N-acetyl-D-glucosamine[J]. Food Res Dev, 2014, 35(2): 131-134. | |
[33] | 殷竟洲, 单步顺, 杨文澜. N-乙酰-D-氨基葡萄糖的制备条件优化及废液回收利用[J]. 应用化工, 2008, 37(12): 1517-1519. |
Yin JZ, Shan BS, Yang WL. Study of optimization technical condition for preparing N-acetyl-D-glucosamine and recycling the liquid waste[J]. Appl Chem Ind, 2008, 37(12): 1517-1519. | |
[34] | 叶子兰, 吴生亮, 姜立春, 等. 苯酚降解菌Y_1的分离与鉴定[J]. 四川环境, 2022, 41(1)24-29. |
Ye ZL, Wu SL, Jiang LC, et al. Isolation and identification of phenol degrading bacterium named Y_1[J]. Sichuan Environ, 2022, 41(1)24-29. | |
[35] |
陈禹竹, 唐琦勇, 顾美英, 等. 一株苯酚降解菌的筛选、鉴定及相关降解特性[J]. 新疆农业科学, 2019, 56(10)1912-1920.
doi: 10.6048/j.issn.1001-4330.2019.10.017 |
Chen YZ, Tang QY, Gu MY, et al. Screening and identification of a phenol degrading bacteria and the relevant degradation characteristics[J]. Xinjiang Agric Sci, 2019, 56(10)1912-1920.
doi: 10.6048/j.issn.1001-4330.2019.10.017 |
|
[36] | 闫莹, 何思锜, 张猛, 等. 诺氟沙星氧化降解过程的生态毒理效应研究[J]. 现代化工, 2022, 42(5): 132-137. |
Yan Y, He SQ, Zhang M, et al. Study on ecotoxicological effects in oxidative degradation process of norfloxacin[J]. Mod Chem Ind, 2022, 42(5): 132-137. | |
[37] | 陈天涯, 袁木子, 张舒羽, 等. 老化秸秆生物炭对诺氟沙星吸附特性的研究[J]. 农业环境科学学报, 2022, 41(5): 1047-1057. |
Chen TY, Yuan MZ, Zhang SY, et al. Effects of aged straw biochar on the adsorption characteristics of norfloxacin[J]. J Agro Environ Sci, 2022, 41(5): 1047-1057. |
[1] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
[2] | LIU Chuan-he, HE Han, HE Xiu-gu, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Analysis of Differential Metabolites and Bacterial Community Structure in Soils of a Pineapple Orchard in Different Continuous-cropping Years [J]. Biotechnology Bulletin, 2021, 37(8): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||