Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 213-224.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1457
Previous Articles Next Articles
ZHAO Zhi-xiang1(), WANG Dian-dong2, ZHOU Ya-lin3, WANG Pei4, YAN Wan-rong1, YAN Bei5, LUO Lu-yun2(), ZHANG Zhuo4()
Received:
2022-11-28
Online:
2023-09-26
Published:
2023-10-24
Contact:
LUO Lu-yun, ZHANG Zhuo
E-mail:zhaozhixiang0207@126.com;luoluyun1992@163.com;lionkingno.1@163.com
ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community[J]. Biotechnology Bulletin, 2023, 39(9): 213-224.
处理 Treatment | 发病率Incidence rate /% | 防治效果 Control effect /% | ||
---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | |
A(CK) | - | - | - | - |
B(Ya-1) | - | - | - | - |
C(FOC) | 32.08 A | 45.83 A | - | - |
D(Ya-1+FOC) | 7.08 B | 10.42 B | 77.93 | 77.26 |
Table 1 Incidence rate and control effect of pepper Fusarium wilt with antagonist Ya-1 at different time points
处理 Treatment | 发病率Incidence rate /% | 防治效果 Control effect /% | ||
---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | |
A(CK) | - | - | - | - |
B(Ya-1) | - | - | - | - |
C(FOC) | 32.08 A | 45.83 A | - | - |
D(Ya-1+FOC) | 7.08 B | 10.42 B | 77.93 | 77.26 |
分组Group | Shannon index | Chao1 |
---|---|---|
0 d | 7.05±0.19ab | 2099.63±72.01bc |
10d-A | 7.11±0.17ab | 2381.63±114.67b |
10d-B | 7.47±0.13a | 2244.79±70.87b |
10d-C | 5.36±0.27d | 2078.28±120.13bc |
10d-D | 6.64±0.04bc | 2382.08±75.46b |
20d-A | 6.78±0.28bc | 1802.08±101.82c |
20d-B | 6.79±0.27bc | 2081.37±72.32bc |
20d-C | 6.17±0.36ac | 2234.21±158.02b |
20d-D | 6.62±0.23abc | 2777.5±115.61a |
Table 2 Fungal α diversity indices around pepper rhizosphere soil
分组Group | Shannon index | Chao1 |
---|---|---|
0 d | 7.05±0.19ab | 2099.63±72.01bc |
10d-A | 7.11±0.17ab | 2381.63±114.67b |
10d-B | 7.47±0.13a | 2244.79±70.87b |
10d-C | 5.36±0.27d | 2078.28±120.13bc |
10d-D | 6.64±0.04bc | 2382.08±75.46b |
20d-A | 6.78±0.28bc | 1802.08±101.82c |
20d-B | 6.79±0.27bc | 2081.37±72.32bc |
20d-C | 6.17±0.36ac | 2234.21±158.02b |
20d-D | 6.62±0.23abc | 2777.5±115.61a |
Fig. 3 Total relative abundance of OTU_1 The data are analyzed by the one-way ANOVA method. Different letters indicate significant differences(P < 0.05)
分组 Group | 非参数多反应置换法MRPP | 相似性分析ANOSIM | 非参数多变量置换法PERMANOVA | |||
---|---|---|---|---|---|---|
δ | P | R | P | F | P | |
0 d vs 10 d | 0.6067 | 0.016 | 0.3198 | 0.001 | 2.5237 | 0.004 |
0 d vs 20 d | 0.6366 | 0.003 | 0.2697 | 0.031 | 2.3031 | 0.004 |
10 d vs 20 d | 0.6228 | 0.085 | 0.0281 | 0.143 | 1.4528 | 0.11 |
Table 3 Dissimilarity test of pepper rhizosphere soil fungal community between two groups at different time points
分组 Group | 非参数多反应置换法MRPP | 相似性分析ANOSIM | 非参数多变量置换法PERMANOVA | |||
---|---|---|---|---|---|---|
δ | P | R | P | F | P | |
0 d vs 10 d | 0.6067 | 0.016 | 0.3198 | 0.001 | 2.5237 | 0.004 |
0 d vs 20 d | 0.6366 | 0.003 | 0.2697 | 0.031 | 2.3031 | 0.004 |
10 d vs 20 d | 0.6228 | 0.085 | 0.0281 | 0.143 | 1.4528 | 0.11 |
时间点 Time point | 分组 Group | 多重响应排列程序MRPP | 相似性分析ANOSIM | 置换多元方差分析PERMANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
δ | P | R | P | F | P | |||||
10 d | A vs B | 0.5371 | 0.015 | 0.432 | 0.011 | 1.7814 | 0.008 | |||
A vs C | 0.4488 | 0.005 | 1 | 0.009 | 7.6872 | 0.006 | ||||
A vs D | 0.503 | 0.005 | 0.996 | 0.015 | 5.7611 | 0.012 | ||||
C vs D | 0.4835 | 0.008 | 1 | 0.006 | 5.4845 | 0.010 | ||||
20 d | A vs B | 0.6623 | 0.026 | 0.256 | 0.029 | 1.3989 | 0.019 | |||
A vs C | 0.5822 | 0.009 | 0.528 | 0.010 | 2.6899 | 0.007 | ||||
A vs D | 0.5915 | 0.007 | 0.684 | 0.010 | 3.0096 | 0.009 | ||||
C vs D | 0.5866 | 0.007 | 0.604 | 0.007 | 2.6057 | 0.011 |
Table 4 Dissimilarity analysis of pepper rhizosphere soil fungal community at different time points among different treatments
时间点 Time point | 分组 Group | 多重响应排列程序MRPP | 相似性分析ANOSIM | 置换多元方差分析PERMANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
δ | P | R | P | F | P | |||||
10 d | A vs B | 0.5371 | 0.015 | 0.432 | 0.011 | 1.7814 | 0.008 | |||
A vs C | 0.4488 | 0.005 | 1 | 0.009 | 7.6872 | 0.006 | ||||
A vs D | 0.503 | 0.005 | 0.996 | 0.015 | 5.7611 | 0.012 | ||||
C vs D | 0.4835 | 0.008 | 1 | 0.006 | 5.4845 | 0.010 | ||||
20 d | A vs B | 0.6623 | 0.026 | 0.256 | 0.029 | 1.3989 | 0.019 | |||
A vs C | 0.5822 | 0.009 | 0.528 | 0.010 | 2.6899 | 0.007 | ||||
A vs D | 0.5915 | 0.007 | 0.684 | 0.010 | 3.0096 | 0.009 | ||||
C vs D | 0.5866 | 0.007 | 0.604 | 0.007 | 2.6057 | 0.011 |
属性Attribute | A | B | C | D | |
---|---|---|---|---|---|
节点数Nodes | 290 | 292 | 311 | 309 | |
连接数Links | 443 | 416 | 406 | 346 | |
正连接数Positive links | 342 | 250 | 250 | 187 | |
负连接数Negative links | 101 | 166 | 156 | 159 | |
平均度Average degree | 3.055 | 2.849 | 2.611 | 2.239 | |
EN | 平均路径距离Average path distance | 6.482 | 6.739 | 7.669 | 9.086 |
RN | 4.778 +/- 0.078 | 5.010 +/- 0.103 | 5.770 +/- 0.108 | 6.606 +/- 0.209 | |
EN | 平均聚类系数Average clustering coefficient | 0.135 | 0.153 | 0.146 | 0.109 |
RN | 0.012 +/- 0.005 | 0.010 +/- 0.005 | 0.006 +/- 0.004 | 0.005 +/- 0.003 | |
EN | 模块化值Modularity | 0.756 | 0.808 | 0.827 | 0.865 |
RN | 0.608 +/- 0.009 | 0.638 +/- 0.008 | 0.690 +/- 0.007 | 0.766 +/- 0.009 |
Table 5 Empirical network and random network properties of fungal populations under different treatments
属性Attribute | A | B | C | D | |
---|---|---|---|---|---|
节点数Nodes | 290 | 292 | 311 | 309 | |
连接数Links | 443 | 416 | 406 | 346 | |
正连接数Positive links | 342 | 250 | 250 | 187 | |
负连接数Negative links | 101 | 166 | 156 | 159 | |
平均度Average degree | 3.055 | 2.849 | 2.611 | 2.239 | |
EN | 平均路径距离Average path distance | 6.482 | 6.739 | 7.669 | 9.086 |
RN | 4.778 +/- 0.078 | 5.010 +/- 0.103 | 5.770 +/- 0.108 | 6.606 +/- 0.209 | |
EN | 平均聚类系数Average clustering coefficient | 0.135 | 0.153 | 0.146 | 0.109 |
RN | 0.012 +/- 0.005 | 0.010 +/- 0.005 | 0.006 +/- 0.004 | 0.005 +/- 0.003 | |
EN | 模块化值Modularity | 0.756 | 0.808 | 0.827 | 0.865 |
RN | 0.608 +/- 0.009 | 0.638 +/- 0.008 | 0.690 +/- 0.007 | 0.766 +/- 0.009 |
Fig. 5 Network diagram of fungal communities under different treatments Each node indicates a fungal OTU, and lines indicate correlations, red lines(edges)indicate negative correlations, and green lines(edges)indicate positive correlations
[1] | El-Eraky AMI, Moubasher AH, Ismail MA, et al. Mycosynthesis of silver nanoparticles and their role in the control of Fusarium wilt of pepper[J]. Journal of Basic and Applied Mycology, 2017, 8: 5-34. |
[2] |
Bashir MR, Atiq M, Sajid M, et al. Antifungal exploitation of fungicides against Fusarium oxysporum f.sp. capsici causing Fusarium wilt of chilli pepper in Pakistan[J]. Environ Sci Pollut Res, 2018, 25(7): 6797-6801.
doi: 10.1007/s11356-017-1032-9 URL |
[3] |
Mohammed TA, Welderufael AH, Yeshinigus BB. Assessment and distribution of foliar and soil-borne diseases of Capsicum species in Ethiopia[J]. Int J Phytopathol, 2021, 10(2): 125-139.
doi: 10.33687/phytopath URL |
[4] |
Wang JH, Wang SX, Zhao ZY, et al. Species composition and toxigenic potential of Fusarium isolates causing fruit rot of sweet pepper in China[J]. Toxins, 2019, 11(12): 690.
doi: 10.3390/toxins11120690 URL |
[5] |
Everts KL, Egel DS, Langston D, et al. Chemical management of Fusarium wilt of watermelon[J]. Crop Prot, 2014, 66: 114-119.
doi: 10.1016/j.cropro.2014.09.003 URL |
[6] |
Debode J, De Tender C, Soltaninejad S, et al. Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology[J]. Front Microbiol, 2016, 7: 565.
doi: 10.3389/fmicb.2016.00565 pmid: 27148242 |
[7] |
Nadeem SM, Ahmad M, Zahir ZA, et al. The role of mycorrhizae and plant growth promoting rhizobacteria(PGPR)in improving crop productivity under stressful environments[J]. Biotechnol Adv, 2014, 32(2): 429-448.
doi: 10.1016/j.biotechadv.2013.12.005 URL |
[8] |
Tian YT, Yue TL, Yuan YH, et al. Tobacco biomass hydrolysate enhances coenzyme Q10 production using photosynthetic Rhodospirillum rubrum[J]. Bioresour Technol, 2010, 101(20): 7877-7881.
doi: 10.1016/j.biortech.2010.05.020 URL |
[9] |
Xu ZH, Shao JH, Li B, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Appl Environ Microbiol, 2013, 79(3): 808-815.
doi: 10.1128/AEM.02645-12 URL |
[10] | 吴月, 李海群, 乔雪, 等. 辣椒枯萎病拮抗细菌Ljb002菌株发酵条件的优化[J]. 微生物学杂志, 2015, 35(5): 67-72. |
Wu Y, Li HQ, Qiao X, et al. Optimization of ferment conditions of pepper wilt antagonistic bacterium strain Ljb002[J]. J Microbiol, 2015, 35(5): 67-72. | |
[11] |
郭珺, 武爱莲, 闫敏, 等. 芽孢杆菌 Pb-4菌株鉴定及其抑菌活性的研究[J]. 华北农学报, 2016, 31(2)224-230
doi: 10.7668/hbnxb.2016.02.036 |
Guo J, Wu AL, Yan M, et al. Identification of Bacillus sp. Pb-4 and its unitilization for antimicrobial activity[J]. Acta Agric Boreali Sin, 2016, 31(2): 224-230 | |
[12] |
Jamal Q, Lee YS, Jeon HD, et al. Effect of plant growth-promoting bacteria Bacillus amylliquefaciens Y1 on soil properties, pepper seedling growth, rhizosphere bacterial flora and soil enzymes[J]. Plant Prot Sci, 2018, 54(3): 129-137.
doi: 10.17221/154/2016-PPS URL |
[13] |
Cao Y, Pi HL, Chandrangsu P, et al. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum[J]. Sci Rep, 2018, 8(1): 4360.
doi: 10.1038/s41598-018-22782-z pmid: 29531357 |
[14] |
Chowdhury SK, Majumdar S, Mandal V. Application of Bacillus sp. LBF-01 in Capsicum annuum plant reduces the fungicide use against Fusarium oxysporum[J]. Biocatal Agric Biotechnol, 2020, 27: 101714.
doi: 10.1016/j.bcab.2020.101714 URL |
[15] |
Ben Khedher S, Mejdoub-Trabelsi B, Tounsi S. Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth[J]. Biol Control, 2021, 152: 104444.
doi: 10.1016/j.biocontrol.2020.104444 URL |
[16] |
Luo LY, Wang P, Zhai ZY, et al. The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities[J]. AMB Express, 2019, 9(1): 173.
doi: 10.1186/s13568-019-0897-z |
[17] |
Zhu LY, Wang XH, Chen FF, et al. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity[J]. Land Degrad Dev, 2019, 30(6): 636-646.
doi: 10.1002/ldr.v30.6 URL |
[18] |
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[19] |
Abarenkov K, Henrik Nilsson R, Larsson KH, et al. The UNITE database for molecular identification of fungi—recent updates and future perspectives[J]. New Phytol, 2010, 186(2): 281-285.
doi: 10.1111/j.1469-8137.2009.03160.x pmid: 20409185 |
[20] | Anderson MJ. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecol, 2001, 26(1): 32-46. |
[21] |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[22] |
Deng Y, Jiang YH, Yang YF, et al. Molecular ecological network analyses[J]. BMC Bioinform, 2012, 13(1): 113.
doi: 10.1186/1471-2105-13-113 |
[23] | Zhou JZ, Deng Y, Luo F, et al. Functional molecular ecological networks[J]. mBio, 2010, 1(4): e00169-e00110. |
[24] | Zhou JZ, Deng Y, Luo F, et al. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2[J]. mBio, 2011, 2(4): e00122-e00111. |
[25] | 唐加雨. 辣椒枯萎病发生规律及其药效试验[J]. 上海蔬菜, 2014(3): 71-72. |
Tang JY. Occurrence regularity of pepper Fusarium wilt and its efficacy test[J]. Shanghai Veg, 2014(3):71-72. | |
[26] | 梁建根, 竺利红, 吴吉安, 等. 生防菌株B-3对辣椒枯萎病的防治及其鉴定[J]. 植物保护学报, 2007, 34(5): 529-533. |
Liang JG, Zhu LH, Wu J, et al. Control efficacy of biocontrol strain B-3 against pepper wilt and its identification[J]. J Plant Prot, 2007, 34(5): 529-533. | |
[27] |
Bakker MG, Chaparro JM, Manter DK, et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant Soil, 2015, 392(1): 115-126.
doi: 10.1007/s11104-015-2446-0 URL |
[28] |
Walters WA, Jin Z, Youngblut N, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proc Natl Acad Sci USA, 2018, 115(28): 7368-7373.
doi: 10.1073/pnas.1800918115 pmid: 29941552 |
[29] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8): 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[30] |
Qiao JQ, Yu X, Liang XJ, et al. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome[J]. BMC Microbiol, 2017, 17(1): 131.
doi: 10.1186/s12866-017-1039-x URL |
[31] | 樊祖清, 芦阿虔, 王海涛, 等. 施用解淀粉芽孢杆菌对烟株生长和根际土壤微生物区系的影响[J]. 河南农业科学, 2019, 48(4): 33-40. |
Fan ZQ, Lu AQ, Wang HT, et al. Effects of Bacillus amyloliquefaciens on the growth of tobacco and microflora in rhizosphere soil[J]. J Henan Agric Sci, 2019, 48(4): 33-40. | |
[32] |
Wani ZA, Kumar A, Sultan P, et al. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant[J]. Sci Rep, 2017, 7(1): 8598.
doi: 10.1038/s41598-017-08974-z |
[33] |
Johnson JM, Ludwig A, Furch ACU, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae-induced disease development in roots[J]. Mol Plant Microbe Interact, 2019, 32(3): 351-363.
doi: 10.1094/MPMI-05-18-0115-R URL |
[34] | 张艳敏. 云南省部分观赏植物叶面病原真菌的多样性调查和系统学研究[D]. 北京: 中国林业科学研究院, 2012. |
Zhang YM. Diversity investigation and systematic study of pathogenic fungi on leaves of some ornamental plants in Yunnan Province[D]. Beijing: Chinese Academy of Forestry, 2012. | |
[35] |
Bastida F, Torres IF, Moreno JL, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils[J]. Mol Ecol, 2016, 25(18): 4660-4673.
doi: 10.1111/mec.13783 pmid: 27481114 |
[36] |
王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898.
doi: 10.13287/j.1001-9332.202003.039 |
Wang XL, Ma K, Fu YZ, et al. Effects of no-tillage mulching and organic fertilizer application on soil fungal community composition and diversity[J]. Chin J Appl Ecol, 2020, 31(3): 890-898. | |
[37] |
Bezerra WM, dos Santos VM, et al. Fungal diversity in soils across a gradient of preserved Brazilian Cerrado[J]. J Microbiol, 2017, 55(4): 273-279.
doi: 10.1007/s12275-017-6350-6 pmid: 28127719 |
[38] | 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528-1536. |
Xue XM, Wang LP, Han XP, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard[J]. Acta Ecol Sin, 2021, 41(4): 1528-1536. | |
[39] |
Mostert D, Molina AB, Daniells J, et al. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia[J]. PLoS One, 2017, 12(7): e0181630.
doi: 10.1371/journal.pone.0181630 URL |
[40] |
Jangir M, Pathak R, Sharma S, et al. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f.sp. lycopersici[J]. Biol Control, 2018, 123: 60-70.
doi: 10.1016/j.biocontrol.2018.04.018 URL |
[41] |
Dhaya R. Flawless identification of Fusarium oxysporum in tomato plant leaves by machine learning algorithm[J]. J Innov Image Process, 2021, 2(4): 194-201.
doi: 10.36548/jiip URL |
[1] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[2] | YANG Dong, TANG Ying. Enzymatic Characterization and Degradation Sites of AFB1 Degradation by the Extracellular Enzyme of Bacillus subtilis Strain WTX1 [J]. Biotechnology Bulletin, 2023, 39(4): 93-102. |
[3] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[4] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[5] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[6] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[7] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[8] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[9] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[10] | WANG Yu-yun, ZHAO Bing, MA Li-ting, LI Lan, DENG Ya-qin, XU Zhi. Humification Process and Microbial Driving Mechanism of Composting [J]. Biotechnology Bulletin, 2022, 38(5): 22-28. |
[11] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[12] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[13] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[14] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[15] | XU Ji-fen, CHEN Hong-fei, WANG Na, LIU Jing. Research Advances in Hog1 MAPK Signaling Pathway in Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 32-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||