Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (10): 50-57.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0373
Previous Articles Next Articles
LI Shuang-xi(), HUA Jin-lian()
Received:
2023-04-19
Online:
2023-10-26
Published:
2023-11-28
Contact:
HUA Jin-lian
E-mail:lsx@126.com;jinlianhua@nwsuaf.edu.cn
LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs[J]. Biotechnology Bulletin, 2023, 39(10): 50-57.
编辑位点 Editing site | 编辑类型 Editing type | CD163分子表达情况 Expressing situation of CD163 | 对PRRSV毒株的易感性 Susceptibility to PRRSV strains | 体外实验 In vitro | 体内实验 In vivo | 参考文献 Reference |
---|---|---|---|---|---|---|
猪源CD163 分子第7外显子 | 插入或缺失 | 对基因2型毒株不易感 | 猪 | [ | ||
未检测到 | 对基因1型和2型毒株不易感 | PAMs | 猪 | [ | ||
人源类CD163蛋白SRCR8结构域编码基因替换猪源CD163分子第7外显子 | 表达嵌合CD163分子 | 对基因1型毒株不易感,对基因2型毒株易感 | PAMs | 猪 | [ | |
对高致病性毒株不易感 | 猪 | [ | ||||
插入或缺失 | 表达缺失SRCR5结构域的CD163 | 肺泡巨噬细胞(PAMs)和集落刺激因子1刺激的外周血单核细胞(PMMs)对基因I型第1、2和3亚型毒株不易感,PMMs对基因II型毒株不易感 | PAMs和PMMs | [ | ||
表达缺失SRCR5结构域的CD163 | 对基因1型第2亚型的高致病性毒株不易感 | 猪 | [ | |||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ | |||
表达截短的CD163蛋白(SRCR5结构域缺失41aa,缺失区域包含病毒受体结合位点) | 对基因2型毒株JXA1和MY不易感 | PAMs | 猪 | [ | ||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ |
Table 1 Advances in anti-PRRS gene-editing pigs targeting CD163
编辑位点 Editing site | 编辑类型 Editing type | CD163分子表达情况 Expressing situation of CD163 | 对PRRSV毒株的易感性 Susceptibility to PRRSV strains | 体外实验 In vitro | 体内实验 In vivo | 参考文献 Reference |
---|---|---|---|---|---|---|
猪源CD163 分子第7外显子 | 插入或缺失 | 对基因2型毒株不易感 | 猪 | [ | ||
未检测到 | 对基因1型和2型毒株不易感 | PAMs | 猪 | [ | ||
人源类CD163蛋白SRCR8结构域编码基因替换猪源CD163分子第7外显子 | 表达嵌合CD163分子 | 对基因1型毒株不易感,对基因2型毒株易感 | PAMs | 猪 | [ | |
对高致病性毒株不易感 | 猪 | [ | ||||
插入或缺失 | 表达缺失SRCR5结构域的CD163 | 肺泡巨噬细胞(PAMs)和集落刺激因子1刺激的外周血单核细胞(PMMs)对基因I型第1、2和3亚型毒株不易感,PMMs对基因II型毒株不易感 | PAMs和PMMs | [ | ||
表达缺失SRCR5结构域的CD163 | 对基因1型第2亚型的高致病性毒株不易感 | 猪 | [ | |||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ | |||
表达截短的CD163蛋白(SRCR5结构域缺失41aa,缺失区域包含病毒受体结合位点) | 对基因2型毒株JXA1和MY不易感 | PAMs | 猪 | [ | ||
未检测到 | 对基因2型高致病性毒株不易感 | 猪 | [ |
[1] | 刘小红, 陈瑶生. 2021年生猪产业发展状况、未来发展趋势与建议[J]. 中国畜牧杂志, 2022, 58(3): 204-209. |
Liu XH, Chen YS. Development status, future development trend and suggestions of pig industry in 2021[J]. Chin J Anim Sci, 2022, 58(3): 204-209. | |
[2] |
Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus[J]. Vet Q, 1991, 13(3): 121-130.
doi: 10.1080/01652176.1991.9694296 URL |
[3] |
Benfield DA, Nelson E, Collins JE, et al. Characterization of swine infertility and respiratory syndrome(SIRS)virus(isolate ATCC VR-2332)[J]. J Vet Diagn Invest, 1992, 4(2): 127-133.
doi: 10.1177/104063879200400202 pmid: 1616976 |
[4] |
Nelsen CJ, Murtaugh MP, Faaberg KS. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents[J]. J Virol, 1999, 73(1): 270-280.
doi: 10.1128/JVI.73.1.270-280.1999 pmid: 9847330 |
[5] | The International Committee on Taxonomy of VirusesICTV. Virus taxonomy. 2020. |
[6] | 郭宝清, 陈章水, 刘文兴, 等. 从疑似PRRS流产胎儿分离PRRSV的研究[J]. 中国畜禽传染病, 1996, 18(2): 1-5. |
Guo BQ, Chen ZS, Liu WX, et al. Isolation and identification of porcine reproductory and respiratory syndrome(PRRS)virus from aborted fetuses suspected of PRRS[J]. Chin J Prev Vet Med, 1996, 18(2): 1-5. | |
[7] | 杨汉春, 管山红, 尹晓敏, 等. 猪繁殖与呼吸综合征病毒的分离与初步鉴定[J]. 中国兽医杂志, 1997, 33(10): 9-10. |
Yang HC, Guan SH, Yin XM, et al. Isolation and preliminary identification of porcine reproductive and respiratory syndrome virus[J]. Chin J Vet Med, 1997, 33(10): 9-10. | |
[8] |
Gao ZQ, Guo X, Yang HC. Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus[J]. Arch Virol, 2004, 149(7): 1341-1351.
pmid: 15221535 |
[9] |
Zhou L, Chen SX, Zhang JL, et al. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China[J]. Virus Res, 2009, 145(1): 97-105.
doi: 10.1016/j.virusres.2009.06.014 pmid: 19559739 |
[10] |
Feng YJ, Zhao TZ, Nguyen T, et al. Porcine respiratory and reproductive syndrome virus variants, Vietnam and China, 2007[J]. Emerg Infect Dis, 2008, 14(11): 1774-1776.
doi: 10.3201/eid1411.071676 pmid: 18976568 |
[11] |
Zhou L, Wang ZC, Ding YP, et al. NADC30-like strain of porcine reproductive and respiratory syndrome virus, China[J]. Emerg Infect Dis, 2015, 21(12): 2256-2257.
doi: 10.3201/eid2112.150360 pmid: 26584305 |
[12] |
Zhao K, Ye C, Chang XB, et al. Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China[J]. J Virol, 2015, 89(20): 10712-10716.
doi: 10.1128/JVI.01446-15 pmid: 26246582 |
[13] |
Anderson TK, Lager KM, et al. Porcine reproductive and respiratory disease virus: evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity[J]. Virology, 2018, 513: 168-179.
doi: S0042-6822(17)30345-8 pmid: 29096159 |
[14] |
Zhang HL, Zhang WL, Xiang LR, et al. Emergence of novel porcine reproductive and respiratory syndrome viruses(ORF5 RFLP 1-7-4 viruses)in China[J]. Vet Microbiol, 2018, 222: 105-108.
doi: 10.1016/j.vetmic.2018.06.017 URL |
[15] |
Xu H, Li C, Li WS, et al. Novel characteristics of Chinese NADC34-like PRRSV during 2020-2021[J]. Transbound Emerg Dis, 2022, 69(5): e3215-e3224.
doi: 10.1111/tbed.14485 pmid: 35182461 |
[16] |
Xu H, Song SJ, Zhao J, et al. A potential endemic strain in China: NADC34-like porcine reproductive and respiratory syndrome virus[J]. Transbound Emerg Dis, 2020, 67(4): 1730-1738.
doi: 10.1111/tbed.13508 pmid: 32037673 |
[17] |
Yu Y, Zhang QY, Cao Z, et al. Recent advances in porcine reproductive and respiratory syndrome virus NADC30-like research in China: molecular characterization, pathogenicity, and control[J]. Front Microbiol, 2022, 12: 791313.
doi: 10.3389/fmicb.2021.791313 URL |
[18] |
Zhou L, Yang BN, Xu L, et al. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like[J]. Vet Microbiol, 2017, 207: 108-116.
doi: S0378-1135(17)30333-4 pmid: 28757009 |
[19] | 杨汉春. 猪场蓝耳病的流行现状与防控对策[J]. 兽医导刊, 2021(1): 7. |
Yang HC. Epidemic situation and prevention and control countermeasures of blue ear disease in pig farms[J]. Vet Orientat, 2021(1): 7. | |
[20] |
Geurts AM, Moreno C. Zinc-finger nucleases: new strategies to target the rat genome[J]. Clin Sci, 2010, 119(8): 303-311.
doi: 10.1042/CS20100201 URL |
[21] | Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol, 2013, 14(1): 49-55. |
[22] |
Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 490-507.
doi: 10.1038/s41580-019-0131-5 |
[23] |
Prather RS, Rowland RRR, Ewen C, et al. An intact sialoadhesin(Sn/SIGLEC1/CD169)is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2013, 87(17): 9538-9546.
doi: 10.1128/JVI.00177-13 URL |
[24] | Liu SS, Zhang CQ, Maimela NR, et al. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma[J]. Oncoimmunology, 2019, 8(7): 1601478. |
[25] | Wells KD, Bardot R, Whitworth KM, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J]. J Virol, 2017, 91(2): e01521-e01516. |
[26] |
Kristiansen M, Graversen JH, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor[J]. Nature, 2001, 409(6817): 198-201.
doi: 10.1038/35051594 |
[27] |
Andersen CBF, Torvund-Jensen M, Nielsen MJ, et al. Structure of the haptoglobin-haemoglobin complex[J]. Nature, 2012, 489(7416): 456-459.
doi: 10.1038/nature11369 |
[31] |
Polfliet MMJ, Fabriek BO, Daniëls WP, et al. The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production[J]. Immunobiology, 2006, 211(6/7/8): 419-425.
doi: 10.1016/j.imbio.2006.05.015 URL |
[32] |
Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses[J]. J Virol, 2007, 81(14): 7371-7379.
doi: 10.1128/JVI.00513-07 pmid: 17494075 |
[33] |
Van Gorp H, Van Breedam W, Van Doorsselaere J, et al. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2010, 84(6): 3101-3105.
doi: 10.1128/JVI.02093-09 pmid: 20032174 |
[34] | Ma HF, Jiang LG, Qiao SL, et al. The crystal structure of the fifth scavenger receptor cysteine-rich domain of porcine CD163 reveals an important residue involved in porcine reproductive and respiratory syndrome virus infection[J]. J Virol, 2017, 91(3): e01897-e01816. |
[35] | Wei X, Li R, Qiao SL, et al. Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells[J]. J Virol, 2020, 94(17): e00709-e00720. |
[36] |
Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20-22.
doi: 10.1038/nbt.3434 pmid: 26641533 |
[37] |
Chen JY, Wang HT, Bai JH, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2): 481-492.
doi: 10.7150/ijbs.25862 URL |
[38] | Burkard C, Opriessnig T, Mileham AJ, et al. Erratum for burkard et Al., “pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection”[J]. J Virol, 2020, 94(15): e00951-e00920. |
[39] |
Burkard C, Lillico SG, Reid E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2): e1006206.
doi: 10.1371/journal.ppat.1006206 URL |
[40] |
Yang H, Zhang J, Zhang X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Res, 2018, 151: 63-70.
doi: 10.1016/j.antiviral.2018.01.004 URL |
[41] |
Guo CH, Wang M, Zhu ZB, et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J]. Front Immunol, 2019, 10: 1846.
doi: 10.3389/fimmu.2019.01846 pmid: 31440241 |
[42] |
Xu K, Zhou YR, Mu YL, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. eLife, 2020, 9: e57132.
doi: 10.7554/eLife.57132 URL |
[43] | 王金玉. STX10等基因敲除及其对PRRSV和PEDV增殖抑制作用的研究[D]. 武汉: 华中农业大学, 2021. |
Wang JY. The knockout of STX10 and other genes and their inhibiting effect on the replication of PRRSV and PEDV[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[44] |
Xu K, Zhang XL, Liu ZG, et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection[J]. Sci China Life Sci, 2022, 65(8): 1535-1546.
doi: 10.1007/s11427-021-2058-2 pmid: 35122622 |
[45] |
Jin Q, Liu XY, Zhuang ZP, et al. Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation[J]. Genome Biol, 2023, 24(1): 8.
doi: 10.1186/s13059-023-02851-x |
[46] |
Prather RS, Wells KD, Whitworth KM, et al. Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus(PRRSV)[J]. Sci Rep, 2017, 7(1): 13371.
doi: 10.1038/s41598-017-13794-2 |
[47] |
McCleary S, Strong R, McCarthy RR, et al. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus[J]. Sci Rep, 2020, 10(1): 8951.
doi: 10.1038/s41598-020-65808-1 pmid: 32488046 |
[48] |
Xie ZC, Pang DX, Yuan HM, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12): e1007193.
doi: 10.1371/journal.ppat.1007193 URL |
[49] | 陆超. 基于猪miR-17-92簇制备抗CSFV/PEDV基因修饰猪的研究[D]. 长春: 吉林大学, 2019. |
Lu C. Preparation of anti-CSFV/PEDV genetically modified pigs based on porcine miR-17-92 cluster[D]. Changchun: Jilin University, 2019. | |
[28] |
Nielsen MJ, Madsen M, Møller HJ, et al. The macrophage scavenger receptor CD163: endocytic properties of cytoplasmic tail variants[J]. J Leukoc Biol, 2006, 79(4): 837-845.
doi: 10.1189/jlb.1005602 URL |
[29] |
Moreno JA, Muñoz-García B, Martín-Ventura JL, et al. The CD163-expressing macrophages recognize and internalize TWEAK: potential consequences in atherosclerosis[J]. Atherosclerosis, 2009, 207(1): 103-110.
doi: 10.1016/j.atherosclerosis.2009.04.033 pmid: 19473660 |
[30] |
Fabriek BO, Polfliet MMJ, Vloet RPM, et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor[J]. Blood, 2007, 109(12): 5223-5229.
doi: 10.1182/blood-2006-08-036467 pmid: 17353345 |
[50] | 杨昕淳, 吴晓龙, 华进联. 诱导多能干细胞向巨噬细胞分化研究进展[J]. 生物工程学报, 2021, 37(11): 4001-4014. |
Yang XC, Wu XL, Hua JL. Induction and differentiation of induced pluripotent stem cells into macrophages: a review[J]. Chin J Biotechnol, 2021, 37(11): 4001-4014. | |
[51] | 岳威, 张炬庆, 吴晓龙, 等. 携带CD163报告载体的猪诱导多能干细胞株的建立[J]. 生物工程学报, 2023, 39(1): 192-203. |
Yue W, Zhang JQ, Wu XL, et al. Development of porcine induced pluripotent stem cells with a CD163 reporter system[J]. Chin J Biotechnol, 2023, 39(1): 192-203. | |
[52] | 岳威, 张炬庆, 杨昕淳, 等. 超表达CD163的猪诱导性多能干细胞系构建[J]. 农业生物技术学报, 2022, 30(10): 2036-2044. |
Yue W, Zhang JQ, Yang XC, et al. Construction of porcine(Sus scrofa)induced pluripotent stem cell lines with over-expression of CD163[J]. J Agric Biotechnol, 2022, 30(10): 2036-2044. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[5] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[6] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[7] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[8] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[9] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[10] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[11] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[12] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[13] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[14] | XUE Man-de, ZHAO Feng-yue, LI Jie, JIANG Dan-hua. Advances in Histone Variants in Plant Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 1-12. |
[15] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||