Biotechnology Bulletin ›› 2013, Vol. 0 ›› Issue (2): 8-14.
• Reviews and Monographs • Previous Articles Next Articles
Li Suzhen Chen Jingtang
Received:
2012-12-24
Revised:
2013-02-27
Online:
2013-02-26
Published:
2013-02-27
Contact:
陈景堂,男,教授,研究方向:玉米遗传育种;E-mail :chenjingtang@126.com
Li Suzhen, Chen Jingtang . Progresses in Studying of Protein Families Involved in Zn/Fe Transporting in Plants[J]. Biotechnology Bulletin, 2013, 0(2): 8-14.
[1] Wintz H, Fox T, Wu YY, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological Chemistry, 2003, 278(48):47644-47653. [2] Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiology, 2007, 143(4):1705-1719. [3] Mathews WR, Wang F, Eide DJ, Van Doren M. Drosophila fear of intimacy encodes a Zrt/IRT-like protein(ZIP)family zinc transporter functionally related to mammalian ZIP proteins[J]. The Journal of Biological Chemistry, 2005, 280(1):787-795. [4] Briat JF, Lebrun M. Plant responses to metal toxicity[J]. Comptes 生物技术通报 Biotechnology Bulletin 2013年第2期12 Rendus de l’Academie des Sciences Serie III, Sciences de la Vie, 1999, 322(1):43-54. [5] Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9(3):322-330. [6] Yang X, Feng Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation[J]. J Trace Elem Med Biol, 2005, 18(4):339-353. [7] Guerinot ML. The ZIP family of metal transporters[J]. Biochim Biophys Acta, 2000, 1465(1-2):190-198. [8] Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5624-5628. [9] Henriques R, Jasik J, Klein M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50(4-5): 587-597. [10] Varotto C, Maiwald D, Pesaresi P, et al. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana[J]. The Plant journal:for Cell and Molecular Biology, 2002, 31(5):589-599. [11] Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6):1223-1233. [12] Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana[J]. Plant & cell Physiology, 2011, 52(8): 1433-1442. [13] Vert G, Briat JF, Curie C. ArabidopsisIRT2 gene encodes a rootperiphery iron transporter[J]. The Plant Journal:for Cell and Molecular Biology, 2001, 26(2):181-189. [14] Vert G, Barberon M, Zelazny E, et al. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta, 2009, 229(6):1171- 1179. [15] Lin YF, Liang HM, Yang SY, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. The New Phytologist, 2009, 182(2):392-404. [16] Kramer U, Talke IN, Hanikenne M. Transition metal transport[J]. FEBS Lett, 2007, 581(12):2263-2272. [17] Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133(1):126-134. [18] Ishimaru Y, Suzuki M, Kobayashi T, et al. OsZIP4, a novel zincregulated zinc transporter in rice[J]. Journal of Experimental Botany, 2005, 56(422):3207-3214. [19] Yang X, Huang J, Jiang Y, Zhang HS. Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein) gene family in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2009, 36(2):281-287. [20] Lee S, Kim SA, Lee J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6):551-558. [21] Lee S, Jeong HJ, Kim SA, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4-5): 507-517. [22] Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4):408-416. [23] Durmaz E, Coruh C, Dinler G, et al. Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat[J]. Plant Molecular Biology Reporter, 2011, 29(3): 582-596. [24] Moreau S, Thomson RM, Kaiser BN, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J]. J Biol Chem, 2002, 277(7):4738-4746. [25] Lopez-Millan AF, Ellis DR, Grusak MA. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula[J]. Plant Molecular Biology, 2004, 54(4):583-596. [26] Xu Y, Wang B, Yu J, et al. Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays[J]. Functional Plant Biology, 2010, 37(3): 194-205. [27] Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake[J]. Nature, 2001, 409(6818):346-349. [28] Schaaf G, Ludewig U, Erenoglu BE, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine2013 年第2期13 李素贞等:植物锌铁转运相关蛋白家族的研究进展 chelated metals[J]. The Journal of Biological Chemistry, 2004, 279(10):9091-9096. [29] Ueno D, Yamaji N, Ma JF. Further characterization of ferricphytosiderophore transporters ZmYS1 and HvYS1 in maize and barley[J]. Journal of Experimental Botany, 2009, 60(12): 3513-3520. [30] von Wiren N, Klair S, Bansal S, et al. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3):1107-1114. [31] Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. Plant J, 2004, 39(3):415-424. [32] Kakei Y, Ishimaru Y, Kobayashi T, et al. OsYSL16 plays a role in the allocation of iron[J]. Plant Molecular Biology, 2012, 79(6): 583-594. [33] Le Jean M, Schikora A, Mari S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading[J]. Plant J, 2005, 44(5):769-782. [34] DiDonato RJ Jr, Roberts LA, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2(YSL2):a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. Plant J, 2004, 39(3):403-414. [35] Waters BM, Chu HH, Didonato RJ, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4):1446-1458. [36] Zheng L, Fujii M, Yamaji N, et al. Isolation and characterization of a barley yellow stripe-like gene, HvYSL5[J]. Plant & Cell Physiology, 2011, 52(5):765-774. [37] Nevo Y, Nelson N. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 2006, 1763(7):609-620. [38] Cellier M, Prive G, Belouchi A, et al. Nramp defines a family of membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(22):10089- 10093. [39] Curie C, Alonso JM, Le Jean M, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal, 2000, 347(Pt 3):749-755. [40] Bereczky Z, Wang HY, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. The Journal of Biological Chemistry, 2003, 278(27):24697-24704. [41] Thomine S, Lelievre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal:for Cell and Molecular Biology, 2003, 34(5):685-695. [42] Lanquar V, Lelievre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 2005, 24(23):4041-4051. [43] Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11):1813- 1816. [44] Sperotto RA, Boff T, Duarte GL, et al. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains[J]. Journal of Plant Physiology 2010, 167(17):1500-1506. [45] Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation[J]. Biometals, 2001, 14(3-4):251-270. [46] Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters[J]. Cellular and Molecular Life Sciences:CMLS, 2004, 61(1):49-68. [47] Kobae Y, Uemura T, Sato MH, et al. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis[J]. Plant & Cell Physiology, 2004, 45(12):1749-1758. [48] van der Zaal BJ, Neuteboom LW, Pinas JE, et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation[J]. Plant Physiology, 1999, 119(3):1047-1055. [49] Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply[J]. The Plant Journal:for Cell and Molecular Biology, 2006, 46(5): 861-879. [50] Podar D, Scherer J, Noordally Z, et al. Metal selectivity determinants in a family of transition metal transporters[J]. The Journal of Biological Chemistry, 2012, 287(5):3185-3196. [51] Yuan L, Yang S, Liu B, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Reports, 2012, 31(1):67-79. 生物技术通报 Biotechnology Bulletin 2013年第2期14 [52] Lan HX, Wang ZF, Wang QH, et al. Characterization of a vacuolar zinc transporter OZT1 in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2):1201-1210. [53] Baxter I, Tchieu J, Sussman MR, et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):618-628. [54] Hall JL, Williams LE. Transition metal transporters in plants[J]. Journal of Experimental Botany, 2003, 54(393):2601-2613. [55] Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta, 2000, 1465(1-2):104-126. [56] Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis[J]. Plant Physiology, 2001, 126(2): 696-706. [57] Woeste KE, Kieber JJ. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype[J]. The Plant Cell, 2000, 12(3):443-455. [58] Papoyan A, Kochian LV. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase[J]. Plant Physiology, 2004, 136(3):3814-3823. [59] Eren E, Arguello JM. Arabidopsis HMA2, a divalent heavy metaltransporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis[J]. Plant Physiology, 2004, 136(3):3712-3723. [60] Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance[J]. FEBS Letters, 2004, 576(3):306-312. [61] Verret F, Gravot A, Auroy P, et al. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch[J]. FEBS Letters, 2005, 579(6): 1515-1522. [62] Hussain D, Haydon MJ, Wang Y, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis[J]. The Plant Cell, 2004, 16(5):1327-1339. [63] Siemianowski O, Mills RF, Williams LE, Antosiewicz DM. Expression of the P((1)B)-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance[J]. Plant Biotechnology Journal, 2011, 9(1):64-74. [64] Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J]. FEBS Letters, 2003, 553(3):370-376. (责任编辑 狄艳红) |
[1] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[2] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[3] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[4] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[5] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[6] | MA Fang-fang, LIU Guan-wen, PANG Bing, JIANG Chun-mei, SHI Jun-ling. Strategies of Increasing Flavonoid Production in Engineered Bacteria by Intensifying the Efflux of Flavonoid in Cells [J]. Biotechnology Bulletin, 2023, 39(5): 63-76. |
[7] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[8] | LI Xin-yue, ZHOU Ming-hai, FAN Ya-chao, LIAO Sha, ZHANG Feng-li, LIU Chen-guang, SUN Yue, ZHANG Lin, ZHAO Xin-qing. Research Progress in the Improvement of Microbial Strain Tolerance and Efficiency of Biological Manufacturing Based on Transporter Engineering [J]. Biotechnology Bulletin, 2023, 39(11): 123-136. |
[9] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[10] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[11] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[12] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[13] | ZHAO Jing-ya, PENG Meng-ya, ZHANG Shi-yu, SHAN Yi-xuan, XING Xiao-ping, SHI Yan, LI Hai-yang, YANG Xue, LI Hong-lian, CHEN Lin-lin. Role of C2H2 Zinc Finger Transcription Factor FpCzf7 in the Growth and Pathogenicity of Fusarium pseudograminearum [J]. Biotechnology Bulletin, 2022, 38(8): 216-224. |
[14] | HONG Tian-shu, HAI Ying, ENHE Ba-ya-er, GAO Feng. Analysis of Expression Characteristics of CmABCG8 Gene in Cucumis melo L. [J]. Biotechnology Bulletin, 2022, 38(7): 178-185. |
[15] | ZHOU Guo-yan, YIN Shan-shan, GAO Jia-xin, WU Chun-cheng, YAN Li-ying, XIE Yang. Identification of AHP Gene Family in Cucumis sativus and Its Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(6): 112-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||