[1] Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors[J]. Sensors, 2009, 9 :1033-1053.
[2] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes—the route toward applications[J]. Science, 2002, 297 :787-792.
[3] Cui Y, Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001, 291 : 851-853.
[4] 赵仲麟, 马鑫, 李燕, 等. 基于内含肽技术的生物传感器[J].
中国农业科技导报, 2012, 14(3):56-60.
[5] 唐芳琼, 孟宪伟, 陈东, 等. 纳米颗粒增强的葡萄糖生物传感 器[J]. 中国科学(B 辑), 2000, 30(2):119-124.
[6] Song HS, Park TH. Integration of biomolecules and nanomaterials : towards highly selective and sensitive biosensors[J]. Biotechnol J, 2011, 6 :1-7.
[7] Yogeswaran U, Chen SM. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material[J].
Sensors, 2008, 8 :290-313.
[8] Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393 :49-52.
[9] Elfstrom N, Juhasz R, Sychugov I, et al. Surface charge sensitivity of silicon nanowires :size dependence[J]. Nano Lett, 2007, 7 : 2608-2612.
[10] Zhang GJ, Zhang G, Chua JH, et al. DNA sensing by silicon nanowire :charge layer distance dependence[J]. Nano Lett, 2008, 8 : 1066-1070.
[11] Osterfeld SJ, Yu H, Gaster RS, et al. Multiplex protein assays based on real-time magnetic nanotag sensing[J]. Proc Natl Acad Sci, 2008, 105 :20637-20640.
[12] Yang H, Chen L, Lei C, et al. Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18[J]. Appl Phys Lett, 2010, 97 : 043702.
[13] Graham DL, Ferreira HA, Freitas PP. Magnetoresistive-based biosensors and biochips[J]. Trends Biotechnol, 2004, 22 :455- 462.
[14] Wang SX, Li G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags :reviewand outlook[J]. IEEE Trans Magn, 2008, 44 :1687-1702.
[15] Hirsch A. Functionalization of single-walled carbon nanotubes[J].
Angew Chem Int Ed, 2002, 41 :1853-1859.
[16] Nistor RA, Newns DM, Martyna GJ. The role of chemistry in graphene doping for carbon-based electronics[J]. ACS Nano, 2011, 5: 3096-3103.
[17] Wan M. A template-free method towards conducting polymer nanostructures[J]. Adv Mater, 2008, 20 :2926-2932.
[18] Patolsky F, Timko BP, Yu G, et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006, 313 :100-104.
[19] Lange K, Rapp BE, Rapp M. Surface acoustic wave biosensors :a review[J]. Anal Bioanal Chem, 2008, 391 :1509-1519.
[20] Rich RL, Myszka DG. Advances in surface plasmon resonance biosensor analysis[J]. Curr Opin Biotechnol, 2000, 11 :54-61.
[21] Keren K, Berman RS, Buchstab E, et al. DNA-templated carbon nanotube field-effect transistor[J]. Science, 2003, 302 :1380- 1382.
[22] Staii C, Chen M, Gelperin A, et al. DNA-decorated carbon nanotubes for chemical sensing[J]. Nano Lett, 2005, 5 :1774-1778.
[23] Johnson A, Khamis SM, Pretil G, et al. DNA-coated nanosensors for breath analysis[J]. IEEE Sens J, 2010, 10 :159-166.
[24] Li Z, Chen Y, Li X, et al. Sequence-specific label-free DNA sensors based on silicon nanowires[J]. Nano Lett, 2004, 4 :245-247.
[25] Homs MC. DNA sensors[J]. Anal Lett, 2002, 35 :1875-1894.
[26] Cattani-Scholz A, Pedone D, Dubey M, et al. Organophosphonatebased PNA-functional- ization of silicon nanowires for label-free DNA detection[J]. ACS Nano, 2008, 2 :1653-1660.
[27] Zhang GJ, Chua JH, Chee RE, et al. Highly sensitive measurements of PNA-DNA hybridiza-tion using oxide-etched silicon nanowire biosensors[J]. Biosens Bioelectron, 2008, 23 :1701-1707.
[28] Song S, Wang L, Li J, et al. Aptamer-based biosensors[J].
Trends Anal Chem, 2008, 27 :108-117.
[29] So HM, Won K, Kim YH, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements[J].
J Am Chem Soc, 2005, 127 :11906-11907.
[30] Yoon H, Kim JH, Lee N, et al. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection[J]. Chem Bio Chem, 2008, 8 : 634-641.
[31] Besteman K, Lee JO, Wiertz FGM, et al. Enzyme-coated carbon nanotubes as single-molecule biosensors[J]. Nano Lett, 2003, 3: 727-730.
[32] Kang X, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosens Bioelectron, 2009, 25 :901-905.
[33] Barone PW, Parker RS, Strano MS. In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor : design, fluorophore properties, advantages, and disadvantages [J].
Anal Chem, 2005, 77 :7556-7562.
[34] Rahman MM, Umar A, Sawada K. High-sensitive glutamate biosensor based on NADH at Lauth’s violet/multiwalled carbon nanotubes composite film on gold substrates [J]. J Phys Chem B, 2009, 113 :1511-1516.
[35] Xue W, Cui T. A thin-film transistor based acetyl-choline sensor using self-assembled carbon nanotubes and SiO2 nanoparticles [J].
Sens Actuators B, 2008, 134 :981-987.
[36] Carraraa S, Shumyantsevab VV, Archakovb AI, et al. Screen printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors [J]. Biosens Bioelectron, 2008, 24 :148-150.
[37] Lee CA, Tsai YC. Preparation of multiwalled carbon nanotubechitosan- alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol[J]. Sens Actuators B, 2009, 138 :518-523.
[38] Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies[J].
Nat Rev Clin Oncol, 2008, 5 :588-599.
[39] Petricoin EF, Belluco C, Araujo RP, et al. The blood peptidome : a higher dimension of information content for cancer biomarker discovery[J]. Nat Rev Cancer, 2006, 6 :961-967.
[40] Li C, Curreli M, Lin H, et al. Complementary detection of prostatespecific antigen using In2O3 nanowires and carbon nanotubes[J].
J Am Chem Soc, 2005, 127 :12484-12485.
[41] Bangar MA, Shirale DJ, Chen W, et al. Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker [J]. Anal Chem, 2009, 81 :2168-2175.
[42] Wen CY, Reuter MC, Tersoff J, et al. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires[J]. Nano Lett, 2010, 10 :514-519.
[43] Banerjee P, Bhunia AK. Mammalian cell-based biosensors for pathogens and toxins[J]. Trends Biotechnol, 2009, 27 :179- 188.
[44] Sasaki T, Matsuki N, Ikegaya Y. Action-potential modulation during axonal conduction[J]. Science, 2011, 331 :599-601.
[45] Kotov NA, Winter JO, Clements IP, et al. Nanomaterials for neural interfaces[J]. Adv Mater, 2009, 21 :3970-4004.
[46] Ryoo SR, Kim YK, Kim MH, et al. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes :proliferation, focal adhesion, and gene transfection studies[J]. ACS Nano, 2010, 4 :6587-6598.
[47] Cohen-Karni T, Qing Q, Li Q, et al. Graphene and nanowire transistors for cellular interfaces and electrical recording[J].
Nano Lett, 2010, 10 :1098-1102.
[48] Timko BP, Cohen-Karni T, Yu G, et al. Electrical recording from hearts with flexible nanowire device arrays[J]. Nano Lett, 2009, 9: 914-918.
[49] Chen L, Bao CC, Hao DL, et al. A prototype of giant magnetoimpedance- based biosensing system for targeted detection of gastric cancer cells[J]. Biosens Bioelectron, 2011, 26 :3246-3253. |