Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (3): 18-28.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0875
Previous Articles Next Articles
CHENG Ying1, 3, JIN Ming-hui2, 3, XIAO Yu-tao1, 3
Received:
2019-09-20
Online:
2020-03-26
Published:
2020-03-17
CHENG Ying, JIN Ming-hui, XIAO Yu-tao. Research Progress in Genome Editing of Lepidoptera Insects[J]. Biotechnology Bulletin, 2020, 36(3): 18-28.
[1] Kim YG, Cha J, Chandrasegaran S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3):1156-1160. [2] Takasu Y, Kobayashi I, Beumer K, et al.Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection[J]. Insect Biochemistry and Molecular Biology, 2010, 40(10):759-765. [3] Merlin C, Beaver LE, Taylor OR, et al.Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases[J]. Genome Research, 2013, 23(1):159-168. [4] Ma SY, Smagghe G, Xia QY.Genome editing in Bombyx mori:New opportunities for silkworm functional genomics and the sericulture industry[J]. Insect Science, 2019, 26(6):964-972. [5] Doyon Y, Vo TD, Mendel MC, et al.Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J]. Nature Methods, 2011, 8(1):74-79. [6] Hansen K, Coussens MJ, Sago J, et al.Genome editing with CompoZr custom zinc finger nucleases(ZFNs)[J]. Journal of Visualized Experiments, 2012, 64:e3304. [7] 廖鹏飞, 聂旺, 余雅心, 等. ZFNs、TALENs和CRISPR-Cas基因组靶向编辑技术及其在植物中的应用[J]. 基因组学与应用生物学, 2016, 35(02):442-451. [8] Khan Z, Khan SH, Mubarik MS, et al.Use of TALEs and TALEN technology for genetic improvement of plants[J]. Plant Molecular Biology Reporter, 2016, 35(1):1-19. [9] Ma S, Zhang S, Wang F, et al.Highly efficient and specific genome editing in silkworm using custom TALENs[J]. PLoS One, 2012, 7(9):e45035. [10] Takasu Y, Sajwan S, Daimon T, et al.Efficient TALEN construction for Bombyx mori gene targeting[J]. PLoS One, 2013, 8(9):e73458. [11] Xu J, Wang Y, Li Z, et al.Transcription activator-like effector nuclease(TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori[J]. Insect Molecular Biology, 2014, 23(6):800-807. [12] Sakurai T, Mitsuno H, Mikami A, et al.Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth[J]. Scientific Reports, 2015, 5:11001. [13] Yang B, Fujii T, Lshikawa Y, et al.Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis[J]. Insect Biochemistry and Molecular Biology, 2016, 70:53-59. [14] Ma SY, Wang X, Liu Y, et al.Multiplex genomic structure variation mediated by TALEN and ssODN[J]. BMC Genomics, 2014, 15:41. [15] Nakade S, Tsubota T, Sakane Y, et al.Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9[J]. Nature Communications, 2014, 5:5560. [16] Zhang Z, Niu B, Ji D, et al.Silkworm genetic sexing through W chromosome-linked, targeted gene integration[J]. Proceedings of the National Academy of Sciences, 2018, 115(35):8752-8756. [17] Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, et al.The crystal structure of TAL effector PthXo1 bound to its DNA target[J]. Science(New York, NY), 2012, 335(6069):716-719. [18] Ma S, Shi R, Wang X, et al.Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor[J]. Scientific Reports, 2014, 4:6867. [19] Markert MJ, Zhang Y, Enuameh MS, et al.Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis[J]. G3(Bethesda), 2016, 6(4):905-915. [20] Mohanraju P, Makarova KS, Zetsche B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299):aad5147. [21] Koonin EV, Makarova KS.Origins and evolution of CRISPR-Cas systems[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1772):20180087. [22] Makarova Ks, Wolf YI, Alkhnbashi OS, et al.An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11):722-736. [23] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 337(6096):816-821. [24] Wang YQ, Li Z, Xu J, et al.The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori[J]. Cell Research, 2013, 23(12):1414-1416. [25] Liu Y, Ma S, Wang X, et al.Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9[J]. Insect Biochemistry and Molecular Biology, 2014, 49:35-42. [26] Zhu L, Mon H, Xu J, et al.CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells[J]. Scientific Reports, 2015, 5:18103. [27] Dong ZQ, Chen TT, Zhang J, et al.Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells[J]. Antiviral Research, 2016, 130:50-57. [28] Sun D, Guo Z, Liu Y, et al.Progress and prospects of CRISPR/Cas systems in insects and other arthropods[J]. Frontiers in Physiology, 2017, 8:608. [29] Koutroumpa FA, Monsempes C, Fran OISMC, et al.Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth[J]. Scientific Reports, 2016, 6:29620. [30] Zhu GH, Xu J, Cui Z, et al.Functional characterization of SlitPBP3 in Spodoptera litura by CRISPR/Cas9 mediated genome editing[J]. Insect Biochemistry and Molecular Biology, 2016, 75:1-9. [31] Chang H, Liu Y, Ai D, et al.A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera[J]. Current Biology, 2017, 27(11):1610. [32] Suzuki MG.Sex determination cascade in insects:A great treasure house of alternative splicing[M]. Reproductive and Developmental Strategies. Springer, 2018:267-288. [33] Xu J, Chen S, Zeng B, et al.Bombyx mori P-element somatic inhibitor(BmPSI)is a key auxiliary factor for silkworm male sex determination[J]. PLoS Genetics, 2017, 13(1):e1006576. [34] Du Q, Wen L, Zheng SC, et al.Identification and functional characterization of doublesex gene in the testis of Spodoptera litura[J]. Insect Science, 2018, 26(6):1000-1010. [35] Chen X, Cao Y, Zhan S, et al.Disruption of sex-specific doublesex exons results in male-and female-specific defects in the black cutworm, Agrotis ipsilon[J]. Pest Management Science, 2019, 75(6):1697-1706. [36] Wang YH, Chen XE, Yang Y, et al.The Masc gene product controls masculinization in the black cutworm, Agrotis ipsilon[J]. Insect Science, 2019, 26(6):1037-1044. [37] Khan SA, Reichelt M, Heckel DG.Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations[J]. Scientific Reports, 2017, 7:40025. [38] Chen X, Cao Y, Zhan S, et al.Identification of yellow gene family in Agrotis ipsilon and functional analysis of Aiyellow-y by CRISPR/Cas9[J]. Insect Biochemistry and Molecular Biology, 2018, 94:1-9. [39] Wang J, Wang H, Liu S, et al.CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins[J]. Insect Biochemistry & Molecular Biology, 2017, 87:147. [40] Jin MH, Xiao YT, Cheng Y, et al.Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera[J]. Insect Science, 2019, 26(6):1029-1036. [41] Wang HQ, Shi Y, Wang L, et al.CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides[J]. Nature Communications, 2018, 9(1):4820. [42] Jin MH, Tao JH, Li Q, et al.Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda[J]. Journal of Integrative Agriculture, 2019, 18(0):5-7. [43] Zuo Y, Wang H, Xu Y, et al.CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides[J]. Insect Biochemistry and Molecular Biology, 2017, 89:79-85. [44] Ma SY, Liu Y, Liu Y, et al.An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites[J]. Insect Biochemistry and Molecular Biology, 2017, 83:13-20. [45] Strecker J, Ladha A.RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448):48-53. [46] Klompe SE, Vo PLH, Halpin-Healy TS, et al.Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764):219-225. [47] Bi HL, Xu J, Tan aj, Huang YP. , et al. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura[J]. Insect Science, 2016, 23(3):469-477. [48] Zhu GH, Peng YC, Zheng MY, et al.CRISPR/Cas9 mediated BLOS2 knockout resulting in disappearance of yellow strips and white spots on the larval integument in Spodoptera litura[J]. Journal of Insect Physiology, 2017, 103:29-35. [49] Ye ZF, Liu XL, Han Q, et al.Functional characterization of PBP1 gene in Helicoverpa armigera(Lepidoptera:Noctuidae)by using the CRISPR/Cas9 system[J]. Scientific Reports, 2017, 7(1):8470. [50] Yuasa M, Kiuchi T, Banno Y, et al.Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation[J]. Insect Biochemistry and Molecular Biology, 2016, 68:33-40. [51] Zhang Z, Aslam AF, Liu X, et al.Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system[J]. Journal of Insect Physiology, 2015, 79:73-79. [52] Huang Y, Chen Y, Zeng B, et al.CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth(Plutella xylostella)[J]. Insect Biochemistry and Molecular Biology, 2016, 75:98-106. [53] Douris V, Steinbach D, Panteleri R, et al.Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51):14692-14697. [54] Yang Y, Wang YH, Chen XE, et al.CRISPR/Cas9-mediated Tyrosine hydroxylase knockout resulting in larval lethality in Agrotis ipsilon[J]. Insect Science, 2018, 25(6):1017-1024. [55] Cui Y, Sun JL, Yu L.Application of the CRISPR gene-editing technique in insect functional genome studies - a review[J]. Entomologia Experimentalis et Applicata, 2017, 162(2):124-132. [56] Wu K, Shirk PD, Taylor CE, et al.CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in fall armyworm moth(Spodoptera frugiperda)[J]. PLoS One, 2018, 13(12):e0208647. [57] Zhang Y, Markert MJ, Groves SC, et al.Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity[J]. Proceedings of the National Academy of Sciences, 2017, 114(36):E7516-E7525. |
[1] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[2] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[3] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[4] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[5] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[6] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[7] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[9] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[10] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[11] | TANG Guang-fu, GUI Yan-ling, MAN Hai-qiao, ZHAO Jie-hong. Editing pyrG Gene of Monascus by CRISPR/Cas 9 and Its Effects on Secondary Metabolism [J]. Biotechnology Bulletin, 2022, 38(8): 198-205. |
[12] | LAI Xin-tong, WANG Ke-lan, YOU Yu-xin, TAN Jun-jie. Recent Advances in CRISPR/Cas-based DNA Base Editing [J]. Biotechnology Bulletin, 2022, 38(6): 1-12. |
[13] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[14] | ZHANG Hao, LI Zhe, GUO Kai, HUANG Yan-hua, HAO Yong-ren. Functional Analysis of TvGCN5 Gene Encoding Histone Acetylase from Trichoderma viride Tv-1511 [J]. Biotechnology Bulletin, 2022, 38(5): 136-148. |
[15] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||