生物技术通报 ›› 2015, Vol. 31 ›› Issue (10): 205-210.doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.031

• 研究报告 • 上一篇    下一篇

山苍子油对白假丝酵母抗菌活性研究

梁青1,2,3,李文茹2,施庆珊2,章卫民1,2   

  1. 1.中国科学院南海海洋研究所, 广州 510301;
    2.广东省微生物研究所 省部共建华南应用微生物国家重点实验室 广东省菌种保藏与应用重点实验室 广东省微生物应用新技术公共实验室, 广州 510070;
    3.中国科学院大学, 北京 100049
  • 收稿日期:2015-03-16 出版日期:2015-10-28 发布日期:2015-10-28
  • 作者简介:梁青, 女, 硕士研究生, 研究方向:有害微生物防治; E-mail:farewellqing@163.com
  • 基金资助:
    广东省科技计划项目(2011B070500020), 广州市科技计划项目(11A24060559), 揭阳市产学研合作项目(201429)

Antifungal Activity of Litsea cubeba Oil Against Candida albicans

Liang Qing1, 2, 3, Li Wenru2, Shi Qingshan2, Zhang Weimin1, 2   

  1. 1. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301; 2. Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070; 3. University of Chinese Academy of Science, Beijing 100049
  • Received:2015-03-16 Published:2015-10-28 Online:2015-10-28

摘要: 研究山苍子油对白假丝酵母菌的抗菌活性, 并阐明其可能的抗菌机制。通过水蒸馏法提取山苍子油, 并利用气相色谱-质谱联用仪(GC/MS)分析其成分。通过琼脂平板稀释法测定山苍子油对白假丝酵母的最低抑菌浓度(MIC)和最低杀菌浓度(MFC), 并研究山苍子油对白假丝酵母的抗菌动力学; 同时利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察山苍子油对白假丝酵母细胞超微结构的影响。结果表明, 自提山苍子油主成分为柠檬烯(26.51%), 柠檬醛(11.94%)和马鞭烯醇(11.84%)。山苍子油对白假丝酵母菌的MIC和MFC均为1.25 μL/mL; 其抗菌动力学研究表明浓度低于其MIC时, 山苍子油仅延长白假丝酵母的生长适应期, 并不能彻底杀死细胞; SEM结果表示, 山苍子易破坏正在出芽的细胞; TEM显示出山苍子破坏细胞壁, 细胞膜, 使细胞裂解。山苍子油具有优良的抗白假丝酵母活性, 且白假丝酵母在芽痕处对山苍子油比较敏感, 高浓度的精油(5.0 μL/mL)对细胞产生不可逆破坏; 山苍子油杀菌的靶标可能是细胞壁和细胞外膜, 使细胞内大分子外泄, 细胞器变形, 最终导致细胞死亡。

关键词: 山苍子油, 白假丝酵母, 抗菌活性, 抗菌动力学, 扫描电镜, 透射电镜

Abstract: The work aims to investigate the antifungal activity of Litsea cubeba oil against Candida albicans, and illustrate its antifungal mechanism. L. cubeba oil was extracted by distillation and the compounds were identified using gas chromatography/mass spectrometry(GC/MS). The minimum inhibitory concentration(MIC)and minimum fungal concentration(MFC)were determined by agar dilution method, and the antifungal kinetics of L. cubeba oil was studied. Finally, scanning and transmission electron microscopy(SEM and TEM)were used to observe the cell ultrastructure alteration after treated with L. cubeba oil. The main compounds of L. cubeba oil were D-Limonene(26.51%), citral(11.94%)and verbenol(11.84%). The MIC and MFC were both 1.25 μL/mL. Concerning antifungal kinetics, the oil only prolonged the lag phase of C. albicans, but not completely killed the cells while the concentration of oil below the MIC. Moreover, results of SEM indicated that C. albicans was destroyed easily at the neck between the mother cell and daughter bud after treated by L. cubeba oil. The results of TEM showed that the essential oil damaged the cell wall or the cell membrane, leading to the leakage of macromolecules and lysis. Conclusively, L. cubeba oil had an excellent antifungal activity against C. albicans, the dividing cells showed much more sensitive to L. cubeba oil, and the high concentration of the oil(5.0 μL/mL)led to irreversible damages of the cells. The targets of L. cubeba oil to fungi were the cell’s wall and outer membrane, which caused the large molecules leakage and organelles deformation, and finally led the cells to death.

Key words: Litsea cubeba oil, Candida albicans, antifungal activity, antifungal kinetics, SEM, TEM