生物技术通报 ›› 2015, Vol. 31 ›› Issue (12): 15-24.doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.003
贾宁,唐研耀,曾燕如,赵国淼,徐亚楠
收稿日期:
2015-01-25
出版日期:
2015-12-19
发布日期:
2015-12-19
作者简介:
贾宁,男,硕士研究生,研究方向:林木重要经济性状的遗传规律与种质创新;E-mail:981183096@qq.com
基金资助:
Jia Ning, Tang Yanyao, Zeng Yanru, Zhao Guomiao, Xu Ya'nan
Received:
2015-01-25
Published:
2015-12-19
Online:
2015-12-19
摘要: 无融合生殖是一种不发生雌雄配子核融合而产生种子的一种无性繁殖过程。有些无融合生殖产生的种子是其母本的克隆,可以保留母本的基因型,因此无融合生殖可用于杂种优势的固定。尽管无融合生殖具有潜在的应用价值,但其形成机理十分复杂,表现在无融合生殖有多种表现形式,且受控的途径多样,遗传机制复杂,至今尚无定论,研究方法也多种多样。对近年来无融合生殖研究方面取得的进展进行了概述,旨在为深入研究无融合生殖提供参考。
贾宁,唐研耀,曾燕如,赵国淼,徐亚楠. 植物无融合生殖研究进展[J]. 生物技术通报, 2015, 31(12): 15-24.
Jia Ning, Tang Yanyao, Zeng Yanru, Zhao Guomiao, Xu Ya'nan. Research Progress on Apomixis in Plants[J]. Biotechnology Bulletin, 2015, 31(12): 15-24.
[1]Nogler GA. Genetics of apospory in apomictic Ranunculus auricomus. V:Conclusion[J]. Botanica Helvetica, 1984, 94(2):411-422. [2]Koltunow AM, Grossniklaus U. Apomixis:a developmental perspective[J]. Annual Review of Plant Biology, 2003, 54(1):547-574. [3]Biknell RA, Koltunow AM. Understanding apomixis:recent advances and remaining conundrums[J]. The Plant Cell Online, 2004, 16(suppl 1):S228-S245. [4]Tucker MR, Koltunow AM. Sexual and asexual(apomictic)seed development in flowering plants:molecular, morphological and evolutionary relationships[J]. Functional Plant Biology, 2009, 36(6):490-504. [5]Koltunow AM, Johnson SD, Okada T. Apomixis in hawkweed:Mendel's experimental nemesis[J]. Journal of Experimental Botany, 2011, 62(5):1699-1707. [6]陈庭木, 谷长先, 迟铭. 水稻无融合生殖与早代稳定遗传判定方法研究[J]. 种子, 2010, 11:95-96. [7]Carman JG. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony[J]. Biological Journal of the Linnean Society, 1997, 61(1):51-94. [8]Pupilli F, Labombarda P, Caceres ME, et al. The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12[J]. Molecular Breeding, 2001, 8(1):53-61. [9] Pupilli F, Martinez EJ, Busti A, et al. Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp[J]. Molecular Genetics and Genomics, 2004, 270(6):539-548. [10] Asker S, Jerling L. Apomixis in plants[M]. Boca Raton:CRC press, 1992. [11] Hofmann NR. Apomixis and gene expression in Boechera[J]. The Plant Cell Online, 2010, 22(3):539-539. [12] 毛宝琴, 李纯凡, 罗世科, 等. 苹果属植物杂交亲和性研究[J]. 西南农业大学学报, 1996, 18(4):311-315. [13]Cosendai AC, H?randl E. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi(Ranunculaceae)[J]. Annals of Botany, 2010, 105(3):457-470. [14] Cosendai AC, Rodewald J, H?randl E. Origin and distribution of autopolyploids via apomixis in the alpine species Ranunculus kuepferi(Ranunculaceae)[J]. Taxon, 2011, 60(2):355-364. [15]Lovell JT, Aliyu OM, Mau M, et al. On the origin and evolution of apomixis in Boechera[J]. Plant Reproduction, 2013, 26(4):309-315. [16]H?randl E, Temsch EM. Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex[J]. Annals of Botany, 2009, 104(1):81-89. [17]Chemisquy MA, Giussani LM, Scataglini MA, et al. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum(Poaceae):a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus[J]. Annals of botany, 2010, 106(1):107-130. [18] Singh M, Goel S, Meeley RB, et al. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein[J]. The Plant Cell Online, 2011, 23(2):443-458. [19] Mallory A, Vaucheret H. Form, function, and regulation of ARGONAUTE proteins[J]. The Plant Cell Online, 2010, 22(12):3879-3889. [20]Eckardt NA. A role for ARGONAUTE in apomixis[J]. The Plant Cell Online, 2011, 23(2):430. [21] Catanach AS, Erasmuson SK, Podivinsky E, et al. Deletion mapping of genetic regions associated with apomixis in Hieracium[J]. Proceedings of the National Academy of Sciences, 2006, 103(49):18650-18655. [22] Okada T, Ito K, Johnson SD, et al. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts[J]. Plant Physiology, 2011, 157(3):1327-1341. [23]ArmentA-Medina A, Demesa-Arévalo E, Vielle-Calzada JP. Epigenetic control of cell specification during female gametogenesis[J]. Sexual Plant Reproduction, 2011, 24(2):137-147. [24] Bencivenga S, Colombo L, Masiero S. Cross talk between the sporophyte and the megagametophyte during ovule development[J]. Sexual Plant Reproduction, 2011, 24(2):113-121. [25] Nonomura KI, Nakano M, Murata K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Molecular Genetics and Genomics, 2004, 271(2):121-129. [26] Nonomura KI, Morohoshi A, Nakano M, et al. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J]. The Plant Cell Online, 2007, 19(8):2583-2594. [27] Zhang S, Cao J, Kong YM, et al. GO-Bayes:Gene Ontology-based overrepresentation analysis using a Bayesian approach[J]. Bioinformatics, 2010, 26(7):905-911. [28]Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, et al. Control of female gamete formation by a small RNA pathway in Arabidopsis[J]. Nature, 2010, 464(7288):628-632. [29] Tucker MR, Okada T, Hu Y, et al. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis[J]. Development, 2012, 139(8):1399-1404. [30] Tucker MR, Okada T, Johnson SD, et al. Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium[J]. Journal of Experimental Botany, 2012, 63(8):3229-3241. [31] Okada T, Hu Y, Tucker MR, et al. Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis[J]. Plant Physiology, 2013, 163(1):216-231. [32] Nemhauser JL, Mockler TC, Chory J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis[J]. PLoS Biology, 2004, 2(9):e258. [33] Weijers D, Schlereth A, Ehrismann JS, et al. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis[J]. Developmental Cell, 2006, 10(2):265-270. [34] Pagnussat GC, Alandete-Saez M, Bowman JL, et al. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte[J]. Science, 2009, 324(5935):1684-1689. [35] Albertini E, Marconi G, Barcaccia G, et al. Isolation of candidate genes for apomixis in Poa pratensis L.[J]. Plant Molecular Biology, 2004, 56(6):879-894. [36] Sharbel TF, Voigt ML, Corral JM, et al. Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex[J]. The Plant Journal, 2009, 58(5):870-882. [37] Sharbel TF, Voigt ML, Corral JM, et al. Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns[J]. The Plant Cell Online, 2010, 22(3):655-671. [38] Polegri L, Calderini O, Arcioni S, et al. Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers[J]. Journal of Experimental Botany, 2010, 61(6):1869-1883. [39] Garcia-Aguilar M, Michaud C, Leblanc O, et al. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes[J]. The Plant Cell Online, 2010, 22(10):3249-3267. [40]贺凤丽, 马三梅. 植物无融合生殖研究新进展[J]. 生命科学, 2009(1):139-144. [41]吴曼, 王蓓, 董彦, 等. 苹果属植物无融合生殖研究进展[J]. 山东农业科学, 2010(7):24-28. [42]马三梅, 王永飞. 单子叶植物无融合生殖的研究进展[J]. 植物学通报, 2002, 19(5):530-537. [43]Barcaccia G, Albertini E. Apomixis in plant reproduction:a novel perspective on an old dilemma[J]. Plant Reproduction, 2013, 26(3):159-179. [44] Roche D, Cong P, Chen Z, et al. An apospory-specific genomic region is conserved between Buffelgrass(Cenchrus ciliaris L. )and Pennisetum squamulatum Fresen[J]. The Plant Journal, 1999, 19(2):203-208. [45] Conner JA, Goel S, Gunawan G, et al. Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus[J]. Plant Physiology, 2008, 147(3):1396-1411. [46] Akiyama Y, Conner JA, Goel S, et al. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromoso-mal heteromorphism of the genomic region associated with apomixis[J]. Plant Physiology, 2004, 134(4):1733-1741. [47] Roche D, Chen Z, Hanna WW, et al. Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet(Pennisetum glaucum)and an apomictic F1(P. glaucum× P. squamulatum)[J]. Sexual Plant Reproduction, 2001, 13(4):217-223. [48] Ozias-Akins P, Roche D, Hanna WW. Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes[J]. Proceedings of the National Academy of Sciences, 1998, 95(9):5127-5132. [49] Labombarda P, Busti A, Caceres ME, et al. An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex[J]. Genome, 2002, 45(3):513-519. [50] Grossniklaus U, Nogler GA, Vandijk PJ. How to avoid sex the genetic control of gametophytic apomixis[J]. The Plant Cell Online, 2001, 13(7):1491-1498. [51] Roche D, Hanna WW, Ozias-Akins P. Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants?[J]. Sexual Plant Reproduction, 2001, 13(6):343-349. [52]Cáceres ME, Matzk F, Busti A, et al. Apomixis and sexuality in Paspalum simplex:characterization of the mode of reproduction in segregating progenies by different methods[J]. Sexual Plant Reproduction, 2001, 14(4):201-206. [53] Deleón G. Mapping diplosporous apomixis in tetraploid Tripsacum:one gene or several genes?[J]. Heredity, 1998, 80(1):33-39. [54] Bicknell RA, Borst NK, Koltunow AM. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms[J]. Heredity, 2000, 84(2):228-237. [55]郭德栋, 康传红, 刘丽萍, 等. 借助于单体附加系传递率分析进行无融合生殖基因定位[J]. 云南大学学报:自然科学版, 1999(3):179-180. [56] Matzk F, Prodanovic S, B?umlein H, et al. The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance[J]. The Plant Cell Online, 2005, 17(1):13-24. [57]杨锋, 伊凯, 吴雅琴, 等. 平邑甜茶无融合生殖基因型分析及雌配子发育模式研究[J]. 果树学报, 2012, 29(4):536-543. [58]Spillane C, Steimer A, Grossniklaus U. Apomixis in agriculture:the quest for clonal seeds[J]. Sexual Plant Reproduction, 2001, 14(4):179-187. [59] Vinkenoog R, Scott RJ. Autonomous endosperm development in flowering plants:how to overcome the imprinting problem?[J]. Sexual Plant Reproduction, 2001, 14(4):189-194. [60] Vinkenoog R, Spielman M, Adams S, et al. Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants[J]. The Plant Cell Online, 2000, 12(11):2271-2282. [61] Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination[J]. Nature, 2010, 464(7288):615-618. [62]Eckardt NA. Patterns of gene expression in apomixis[J]. The Plant Cell Online, 2003, 15(7):1499-1501. [63] Koltunow AM, Johnson SD, Lynch M, et al. Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency[J]. Planta, 2001, 214(2):196-205. [64]Boutilier K, OffringAR, Sharma VK, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth[J]. The Plant Cell Online, 2002, 14(8):1737-1749. [65] Tucker MR, Araujo ACG, Paech NA, et al. Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways[J]. The Plant Cell Online, 2003, 15(7):1524-1537. [66]Hecht V, Vielle-Calzada JP, Hartog MV, et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiology, 2001, 127(3):803-816. [67] Luo M, Bilodeau P, Dennis ES, et al. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds[J]. Proceedings of the National Academy of Sciences, 2000, 97(19):10637-10642. [68] Ohad N, Margossian L, Hsu YC, et al. A mutation that allows endosperm development without fertilization[J]. Proceedings of the National Academy of Sciences, 1996, 93(11):5319-5324. [69]胡龙兴, 王兆龙. 植物无融合生殖相关基因研究进展[J]. 遗传, 2008, 30(2):155-163. [70]马三梅, 王永飞. 植物无融合生殖相关基因的研究进展[J]. 种子, 2006, 24(10):42-43. [71]甄睿, 张丽杰, 梁敏, 等. SERK 基因片段在平邑甜茶和四倍性后代花期前后的表达特性研究[J]. 中国农学通报, 2011, 27(15):239-244. [72]Marimuthu MPA, Jolivet S, Ravi M, et al. Synthetic clonal reproduction through seeds[J]. Science, 2011, 331(6019):876. [73] Kantama L, Lambert Y, Hu H, et al. Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population[J]. Sexual Plant Reproduction, 2006, 19(2):73-82. [74] Ozias-Akins P, van Dijk PJ. Mendelian genetics of apomixis in plants[J]. Annu Rev Genet, 2007, 41:509-537. [75] Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199. [76] Lathrop GM, Lalouel JM, Julier C, et al. Strategies for multilocus linkage analysis in humans[J]. Proceedings of the National Academy of Sciences, 1984, 81(11):3443-3446. [77]Lu Q, Cui Y, Wu R. A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family[J]. BMC Genetics, 2004, 5(1):20. [78] WU R, Casella G, Ma CX. Linkage analysis and map construction[M]. Statistical Genetics of Quantitative Traits:Linkage, Maps, and QTL, 2007:43-75. [79] Noyes RD, Rieseberg LH. Two independent loci control agamospermy(apomixis)in the triploid flowering plant Erigeron annuus[J]. Genetics, 2000, 155(1):379-390. [80] Zhang B, Wang ZJ, Jin SH, et, al A pattern of unique embryogenesis occurring via apomixis in hickory(Carya cathayensis)[J]. Biologia Plantarum, 2012, 56:620-627. [81] Hou W, Lin S, Li Y, et al. A model for linkage analysis with apomixis[J]. Theoretical and Applied Genetics, 2011, 123(5):681-691. [82]Zeng Y, Hou W, Song S, et al. A statistical design for testing apomictic diversification through linkage analysis[J]. Briefings in Bioinformatics, 2014, 15(2):306-318. [83]Yin D, Zeng YR, Jiang L, et al. A reciprocal cross design to map the genetic architecture of complex traits in apomictic plants[J]. New Phytologist, 2015, 205(3):1360-1367. [84]宋双. 基于显性标记的无融合生殖物种山核桃的连锁分析与及苗期生长性状相关的QTL定位[D]. 临安:浙江农林大学, 2012. [85]Ozias-Akins P, Lubbers EL, Hanna WW, et al. Transmission of the apomictic mode of reproduction in Pennisetum:co-inheritance of the trait and molecular markers[J]. Theoretical and Applied Genetics, 1993, 85(5):632-638. [86]Ebina M, Nakagawa H. RAPD analysis of apomictic and sexual lines in guineagrass(Panicum maximum Jacq. )[J]. Journal of Japanese Society of Grassland Science(Japan), 2001, 47(3):251- 255. [87]Ortiz JPA, Pessino SC, Leblanc O, et al. Genetic fingerprinting for determining the mode of reproduction in Paspalum notatum, a subtropical apomictic forage grass[J]. Theoretical and Applied Genetics, 1997, 95(5-6):850-856. [88] Albertini E, Barcaccia G, Porceddu A, et al. Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties[J]. Molecular Breeding, 2001, 7(4):293-300. [89] Amsellem L, Noyer JL, Hossaert-Mckey M. Evidence for a switch in the reproductive biology of Rubus alceifolius(Rosaceae)towards apomixis, between its native range and its area of introduction[J]. American Journal of Botany, 2001, 88(12):2243-2251. [90] Ruiz C, Breto MP, Asins MJ. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers[J]. Euphytica, 2000, 112(1):89-94. [91]Barcaccia G, Mazzucato A, Belardinelli A, et al. Inheritance of parental genomes in progenies of Poa pratensis L. from sexual and apomictic genotypes as assessed by RAPD markers and flow cytometry[J]. Theoretical and Applied Genetics, 1997, 95(4):516-524. [92]康传红, 韩晓云. 利用 RAPD 标记鉴定甜菜无融合生殖的同一性[J]. 生物技术, 2002, 12(4):9-11. [93]栗茂腾. 小麦和无融合生殖披碱草杂交后代(BC2F2)的无融合生殖及胚胎发育过程中的异常现象研究[J]. 植物学通报, 2002, 19(2):201-207. [94]Leblanc O, Grimanelli D, Gonzalez-De-Leon D, et al. Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers[J]. Theoretical and Applied Genetics, 1995, 90(7-8):1198-1203. [95]Grouh MSH, Vahdati K, Lotfi M, et al. Production of haploids in persian walnut through parthenogenesis induced by gamma-irradiated pollen[J]. Journal of the American Society for Horticultural Science, 2011, 136(3):198-204. [96]王国安, 虎海防, 张强. 利用孤雌生殖对核桃进行遗传纯化初探[J]. 经济林研究, 2009, 27(2):88-92. [97]Albertini E, Barcaccia G, Veronesi F, et al. Parthenogenesis induction in diplosporic tetraploidized alfalfa. In:Lucerne and medics for the XXI Century[C]. Proceedings XIII Eucarpia Medicago spp. Group Meeting, Perugia, Italy, Universita di Perugia, 2000:68-74. [98]刘丽, 张金智, 梅丽, 等. 兼性无融合生殖龙须草SSR引物开发及杂交后代的检测[J]. 西北植物学报, 2008, 28(10):1947-1953. [99]Vielle-Calzada JP, Nuccio ML, Budiman MA, et al. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare(L. )Link[J]. Plant Molecular Biology, 1996, 32(6):1085-1092. [100] 于冰, 张绍军, 李海英, 等. 甜菜无融合生殖系花期表达基因的差异分析[J]. 中国糖料, 2003(1):14-17. [101] Chen L, Miyazaki C, Kojimai A, et al. Isolation and characteriza-tion of a gene expressed during early embryo sac development in apomictic guinea grass(Panicum maximum)[J]. Journal of Plant Physiology, 1999, 154(1):55-62. [102] Pessino SC, Espinoza F, Martinez EJ, et al. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum[J]. Hereditas, 2001, 134(1):35-42. [103] Pessino SC, Ortiz JPA, Leblanc O, et al. Identification of a maize linkage group related to apomixis in Brachiaria[J]. Theoretical and Applied Genetics, 1997, 94(3-4):439-444. [104] 张波, 吴志刚, 刘文毅, 等. 蒲公英无融合生殖特性初探[J]. 沈阳农业大学学报, 2012, 42(4):475-478. [105] 郝建华, 沈宗根. 植物无融合生殖的筛选和鉴定研究进展[J]. 西北植物学报, 2009, 29(10):2128-2136. [106] Hanna WW. Use of apomixis in cultivar development[J]. Advances in Agronomy, 1995, 59:333-350. [107] 高建伟, 李忠德, 孙其信, 等. 植物无融合生殖研究进展[J]. 生物工程进展, 2000, 20(5):43-47. [108] 温岚, 喻春明, 王延周, 等. 苎麻多胚苗遗传多样性的 SRAP 标记分析[J]. 湖南农业大学学报:自然科学版, 2011, 37(3):243-247. [109]Matzk F, Meister A, Schubert I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots[J]. The Plant Journal, 2000, 21(1):97-108. [110] Matzk F, Meister A, Brutovska R, et al. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis[J]. The Plant Journal, 2001, 26(3):275-282. [111] 刘捍中, 蒲富慎, 任庆棉, 等. 无融合生殖苹果属植物的某些特性[J]. 园艺学报, 1989, 16(1):1-4. [112] Elisiario PJ, Santos GG, Guerreiro AR, et al. Isozyme analysis revealed that the Portuguese mandarin'Carvalhais' originated as a single clone[J]. Scientia Horticulturae, 1999, 82(1):145-152. |
[1] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[2] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[3] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[4] | 薛满德, 赵峰月, 李洁, 姜丹华. 组蛋白变体在植物表观遗传调控中的研究进展[J]. 生物技术通报, 2022, 38(7): 1-12. |
[5] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[6] | 薛翔澜, 丁洋洋, 刘悦, 李晓波, 蒋琳, 何晓红, 马月辉, 赵倩君. 哺乳动物m6A与生长发育相关生物学功能研究进展[J]. 生物技术通报, 2021, 37(4): 251-259. |
[7] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[8] | 江芮, 吕柯孬, 潘学峰, 崔新霞, 申世刚, 丁良. 表观遗传药物研发的现状与挑战[J]. 生物技术通报, 2019, 35(8): 213-225. |
[9] | 吴霄, 庄站伟, 马晓莉, 黄思秀, 李紫聪, 徐铮. 核移植介导的哺乳动物体细胞核重编程研究进展[J]. 生物技术通报, 2019, 35(11): 187-194. |
[10] | 徐以华, 黎起秦, 刘连盟, 王玲, 丁新华, 侯雨萱, 黄世文. 水稻/拟南芥防御病原细菌入侵的表观遗传调控研究进展[J]. 生物技术通报, 2018, 34(2): 87-95. |
[11] | 谭玉荣, 王丹, 高璇, 刘进平. 植物长链非编码RNA研究进展[J]. 生物技术通报, 2018, 34(10): 1-10. |
[12] | 柳莹, 高丽, 冯俊荣. 线粒体表观遗传学研究进展[J]. 生物技术通报, 2018, 34(1): 60-66. |
[13] | 王连庆, 翟俏丽, 赵培庆, 李涛. 骨髓间充质干细胞分化过程中表观遗传调控机制的研究进展[J]. 生物技术通报, 2016, 32(7): 21-27. |
[14] | 许锴,陈霞,高绍荣. 我国诱导多能干细胞研究进展[J]. 生物技术通报, 2015, 31(4): 72-81. |
[15] | 姜楠,潘学峰. 表观遗传学及现代表观遗传生物医药技术的发展[J]. 生物技术通报, 2015, 31(4): 105-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||