生物技术通报 ›› 2016, Vol. 32 ›› Issue (4): 48-62.doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.006
解沛燕1,朱龙佼1,许文涛1,2
收稿日期:
2015-07-08
出版日期:
2016-04-25
发布日期:
2016-04-26
作者简介:
解沛燕,女,硕士,研究方向:食品工程;E-mail:495366514@qq.com
基金资助:
XIE Pei-yan1 ,ZHU Long-jiao1, XU Wen-tao1,2
Received:
2015-07-08
Published:
2016-04-25
Online:
2016-04-26
摘要: 适配体建立在仿生学基础上,是在体外从单链核酸随机序列库中筛选出的对某种靶物质具有高亲和度的寡聚核苷酸(DNA或RNA)片段。相较于食源性致病菌的常规检测手段,适配体具备特异性强、稳定性好及易于修饰等优点,因此在该领域得到了关注和应用。但前人对适配体与靶物质结合的原理认识尚不够深入,对食源性致病菌的适配体筛选及应用总结还存在许多不足。结合食源性致病菌的自身结构特点,介绍了该类物质的适配体筛选特点和检测领域中的最新研究进展,提出了目前存在的问题及发展趋势。
解沛燕,朱龙佼,许文涛. 适配体在食源性致病菌检测中的应用进展[J]. 生物技术通报, 2016, 32(4): 48-62.
XIE Pei-yan ,ZHU Long-jiao, XU Wen-tao,. Application Progress of Aptamers in the Detection of Food-borne Pathogenic Bacteria[J]. Biotechnology Bulletin, 2016, 32(4): 48-62.
[1]徐小英. 我国食物(食品)质量安全存在的主要问题及应对措施[J]. 首都师范大学学报:自然科学版, 2013, 34(6):76-85. [2]刘士敬. 食源性疾病的流行病学[J]. 中国社区医师, 2008, 24(4):9-10. [3]Tim, Lawruk. 食源性致病菌的检测现状与突破[J]. 食品安全导刊, 2015(z1):44-45. [4]GB29921-2013《食品安全国家标准——食品中致病菌限量》[S] [5]李宁, 杨大进, 郭云昌, 等. 我国食品安全风险监测制度与落实现状分析[J]. 中国食品学报, 2011, 11(3):5-8. [6]Banerjee J, Nilsen-Hamilton M. Aptamers:multifunctional molec-ules for biomedical research[J]. Journal of Molecular Medicine, 2013, 91(12):1333-1342. [7]Chen B, Wang Z, Hu D, et al. Determination of nanomolar levels of mercury(II)by exploiting the silver stain enhancement of the aggregation of aptamer-functionalized gold nanoparticles[J]. analytical letters, 2014, 47(5):795-806. [8]Wang X, Guo XG. Ultrasensitive Pb2+ detection based on fluoresc-ence resonance energy transfer(FRET)between quantum dots and gold nanoparticles. [J]. Analyst, 2009, 134(7):1348-1354. [9]Wu S, Duan N, Shi Z, et al. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+[J]. Talanta, 2014, 128:327-336. [10]Wang L. Selection of DNA aptamers that bind to four organophosphorus pesticides[J]. Biotechnology Letters, 2012, 34(5):869-874. [11]Jiang He, Yuan Liu, Mingtao Fan, et al. Isolation and identification of the DNA aptamer target to acetamiprid[J]. J Agric Food Chem, 2011, 59(5):1582-1586. [12]Kang BK, Kim JH, Kim S, et al. Aptamer-modified anodized aluminum oxide-based capacitive sensor for the detection of bisphenol A[J]. Applied Physics Letters, 2011, 98(7):073703. [13]倪姮佳. 恩诺沙星和磺胺二甲嘧啶核酸适配体的筛选及化学发光检测方法的研究[D]. 北京:中国农业大学, 2014. [14]Liu L. Development of an immunochromatographic strip test for rapid detection of ciprofloxacin in milk samples[J]. Sensors, 2014, 14(9):16785-16798. [15]Lee YJ, Han SR, Maeng JS, et al. In vitro selection of Escherichia coli O157∶H7-specific RNA aptamer[J]. Biochemical and Biophysical Research Communications, 2012, 417(1):414-420. [16]Wu W, Zhang J, Zheng M, et al. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157∶H7[J]. PLoS One, 2012, 7(11):e48999. [17]Li H, Ding X, Peng Z, et al. Aptamer selection for the detection of Escherichia coli K88[J]. Canadian Journal of Microbiology, 2011, 57(6):453-459. [18]Bruno JG, Carrillo MP, Phillips T. In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes[J]. Folia Microbiologica, 2008, 53(4):295-302. [19]Kim SE. Harnessing aptamers for electrochemical detection of endotoxin[J]. Analytical Biochemistry, 2012, 424(1):12-20. [20]Bruno JG. A novel screening method for competitive FRET-aptamers applied to E. coli assay development[J]. Mccarthy, 2010, 20(6):1211-1223. [21]Savory N, Nzakizwanayo J, Abe K, et al. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. [J]. J Microbiol Methods, 2014, 104:94-100. [22]Janagama JH, HP Dwivedi. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars[J]. Mol Cell Probes, 2009, 23(1):20-28. [23]Pan Q, Zhang XL, Wu HY, et al. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(10):4052-4060. [24]Liu GQ, Yu XF, Xue F, et al. Screening and preliminary application of a DNA aptamer for rapid detection of Salmonella O8[J]. Microchimica Acta, 2012, 178(1-2):237-244. [25]Hyeon JY, Chon JW, Choi IS, et al. Development of RNA aptamers for detection of Salmonella enteritidis[J]. Journal of Microbiological Methods, 2012, 89(1):79-82. [26]Cao X, Li S, Chen L, et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus[J]. Nucleic Acids Research, 2009, 37(14):4621-4628. [27]Suh SH, Dwivedi HP, Choi SJ, et al. Selection and characterization of DNA aptamers specific for Listeria species[J]. Analytical Biochemistry, 2014, 459(18):39-45. [28]Duan N, Wu S, Chen X, et al. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus[J]. J Agric Food Chem, 2012, 60(16):4034-4038. [29]K?rkk?inen RM, Drasbek MR, McDowall I, et al. Aptamers for safety and quality assurance in the food industry:detection of pathogens[J]. International Journal of Food Science and Technology, 2011, 46(3):445-454. [30]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968):505-510. [31]Ogihara K, Savory N, Abe K, et al. DNA aptamers against the Cry j 2 allergen of Japanese cedar pollen for biosensing applications[J]. Biosen Bioelectron, 2015, 63:159-165. [32]Savory N, Goto S, Yoshida W, et al. Two-dimensional electrophoresis-based selection of aptamers against an unidentified protein in a tissue sample[J]. Analytical Letters, 2013, 46(18):2954-2963. [33]Xi Z, Huang R, Li Z, et al. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection[J]. ACS Appl Mater & Interfaces, 2015, 21:11215-23. [34]Ashley J, Ji K, Li SF. Selection of cholesterol esterase aptamers using a dual-partitioning approach[J]. Electrophoresis, 2015, 36(20):2616-2621. [35]Hijiri H, Koji S, Kazunori I. Selection of DNA aptamers against VEGF165 using a protein competitor and the aptamer blotting method[J]. Biotechnol Lett, 2008, 30:829-834. [36] Dwivedi HP, Smiley RD, Jaykus LA. Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting[J]. Appl Microbiol Biotechnol, 2013, 97(8):3677-3686. [37] Duan N, Ding X, He L, et al. Selection, identification and application of a DNA aptamer against Listeria monocytogenes[J]. Food Control, 2013, 33(1):239-243. [38]Liu XM, Zhang DJ, Cao GJ, et al. RNA aptamers specific for bovine thrombin[J]. Mol Recognit, 2003, 16:23-27. [39]Han SR, Lee SW. In vitro selection of RNA aptamer specific to Staphylococcus aureus[J]. Ann Microbiol, 2014, 2:883-885. [40]Huge BJ, Flaherty RJ, Dada OO, et al. Capillary electrophoresis coupled with automated fraction collection[J]. Talanta, 2014, 130:288-293. [41]Mann D, Reinemann C, Stoltenburg R, et al. In vitro selection of DNA aptamers binding ethanolamine[J]. Biochemical and Biophysical Research Communications, 2005, 338:1928-1934. [42]Huang Y, Chen X, Xia Y, et al. Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A[J]. Analytical Methods, 2014, 6(3):690-697. [43]Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection[J]. Analytical and Bioanalytical Chemistry, 2005, 383(1):83-91. [44]Cruz-Aguado JA, Penner G. Determination of ochratoxin a with a DNA aptamer[J]. J Agric Food Chem, 2008, 22:10456-10461. [45]McKeague M, Bradley CR, Girolamo AD, et al. Screening and initial binding assessment of fumonisin B1 aptamers[J]. International Journal of Molecular Sciences, 2010, 11(12):4864-4881. [46]Liu M, Kagahara T, Abe H, et al. In vitro selection of RNA aptamer to hemin[C]//Nucleic Acids Symposium Series. Oxford University Press, 2008, 52(1):513-514. [47]Liu M, Kagahara T, Abe H, et al. Direct in vitro selection of hemin-binding DNA aptamer with peroxidase activity[J]. Bulletin of the Chemical Society of Japan, 2009, 82(1):99-104. [48]Vianini E, Palumbo M, Gatto B. In vitro selection of DNA aptamers that bind L-tyrosinamide[J]. Bioorganic & Medicinal Chemistry, 2001, 9(10):2543-2548. [49]Zhang H, Hamasaki A, Toshiro E, et al. Automated in vitro selection to obtain functional oligonucleotides[C]//Nucleic acids symposium series. Oxford University Press, 2000, 44(1):219-220. [50]Berezovski M, Musheev M, Drabovich A, et al. Non-SELEX Selection of Aptamers[J]. Journal of the American Chemical Society Jacs, 2006, 128(3):1410-1411. [51]Ashley J, Ji K, Li SF. Selection of bovine catalase aptamers using non‐SELEX[J]. Electrophoresis, 2012, 33(17):2783-2789. [52]Yu X, Yu Y. A mathematical analysis of the selective enrichment of NECEEM-based non-SELEX[J]. Applied Biochemistry and Biotechnology, 2014, 173(8):2019-2027. [53]Tok J, Lai J, Leung T, et al. Selection of aptamers for signal transduction proteins by capillary electrophoresis[J]. Electrophoresis, 2010, 31(12):2055-2062. [54]Yufa R, Krylova SM, Bruce C, et al. Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection:allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein[J]. Analytical Chemistry, 2014, 87(2):1411-1419. [55]王文凤. 真菌毒素寡核苷酸适配体的筛选与应用[D].无锡: 江南大学, 2012. [56]Wu H, Li M, Wang Y, et al. Aptasensors for rapid detection of Escherichia coli O157∶H7 and Salmonella typhimurium[J]. Nanoscale Research Letters, 2012, 7(47):765-781. [57]Teller C, Shimron S, Willner I, et al. Aptamer-DNAzyme hairpins for amplified biosensing[J]. Analytical Chemistry, 2009, 81(21):9114-9119. [58]Cao ZJ, Peng QW, Qiu X, et al. Highly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platform[J]. Journal of Pharmaceutical Analysis, 2011, 1(3):159-165. [59]Song Y, Yang X, Li Z, et al. Label-free chemiluminescent ATP aptasensor based on graphene oxide and an instantaneous derivat-ization of guanine bases[J]. Biosensors and Bioelectronics, 2014, 51:232-237. [60] Shim WB, Mun H, Joung HA, et al. Chemiluminescence competi-tive aptamer assay for the detection of aflatoxin B1 in corn samples , 2014, 58:57-60. [32]Ma CP, Han D, Shi C. A new isothermal nucleic acid detection strategy mediated by a double-nicked beacon[J]. Chem Commun, 2014, 50(29):3799-3801. [33]Zhu X, Zhou X, Xing D. Label-free detection of microRNA:two-step signal enhancement with a hairpin-probe-based graphene fluorescence switch and isothermal amplification[J]. Chemistry, 2013, 19(17):5487-5494. [34]Wang XP, Yin BC, Wang P, et al. Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme[J]. Biosensors and Bioelectronics, 2013, 42:131-135. [35]Bi S, Cui Y, Li L. Dumbbell probe-mediated cascade isothermal amplification:A novel strategy for label-free detection of microRNAs and its application to real sample assay[J]. Analytica Chimica Acta, 2013, 760:69-74. [36]Ogawa A. Isothermal sensitive detection of microRNA using an autonomous DNA machine recycling output as input[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(20):6056-6060. [37]Thévenot DR, Toth K, Durst RA, et al. Electrochemical biosensors:recommended definitions and classification Biosens[J]. Bioelectron, 2011, 16(1-2):121-131. [38]Zhang GJ, Chua JH, Chee RE, et al. Label-free direct detection of MiRNAs with silicon nanowire biosensors[J]. Biosens Bioelectron, 2009, 24(8):2504-2508. [39]Cheng Y, Lei J, Chen Y, et al. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters[J]. Biosensors and Bioelectronics, 2014, 51:431-436. [40]Dong H, Hao K, Tian Y, et al. Label-free and ultrasensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification[J]. Biosensors and Bioelectronics, 2014, 53:377-383. [41]Ge Z, Lin M, Wang P, et al. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor[J]. Anal Chem, 2014, 86(4):2124-2130. [42]Cai Z, Song Y, Wu Y, et al. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA[J]. Biosens Bioelectron, 2013, 41:783-788. [43]Lin M, Wen Y, Li L, et al. Target-Responsive, DNA Nanostructure- Based E?DNA Sensor for microRNA Analysis[J]. Anal Chem, 2014, 86(5):2285-2288. [44]Yu Y, Chen Z, Shi L, et al. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification[J]. Anal Chem, 2014, 86(16):8200-8205. [45]Deng H, Shen W, Ren Y, et al. A highly sensitive and selective homogenous assay for profiling microRNA expression[J]. Biosensors and Bioelectronics, 2014, 54:650-655. [46]Cai Z, Song Y, Wu Y, et al. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA[J]. Biosensors and Bioelectronics, 2013, 41:783-788. [47]Yang J, Strickler JR, Gunasekaran S. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples[J]. Nanoscale, 2012, 4(15):4594-4602. [48]Gao Z, Deng H, Shen W, et al. A label-free biosensor for electrochemical detection of femtomolar microRNAs[J]. Anal Chem, 2013, 85(30):1624-1630. [49]Shen W, Deng H, Ren Y, et al. A label-free microRNA biosensor based on DNAzyme-catalyzed and microRNA-guided formation of a thin insulating polymer film[J]. Biosensors Bioelectronics, 2013, 44:171-176. [50]Wang Z, Zhang J, Guo Y, et al. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA[J]. Biosensors and Bioelectronics, 2013, 45:108-113. [51]Ren Y, Deng H, Shen W, et al. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum[J]. Anal Chem, 2013, 85(9):4784-4789. [52]Meng X, Zhou Y, Liang Q, et al. Electrochemical determination of microRNA-21 based on bio bar code and hemin/G-quadruplet DNAenzyme[J]. Analyst, 2013, 138(12):3409-3415. [53]Tran HV, Piro B, Reisberg S, et al. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes:application to prostate cancer biomarker miR-141[J]. Biosensors and Bioelectronics, 2013, 49:164-169. [54]Hong CY, Chen X, Liu T, et al. Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers[J]. Biosensors and Bioelectronics, 2013, 50:132-136. [55]Ramnani P, Gao Y, Ozsoz M, et al. Electronic detection of microRNA at ettomolar level with high specificity[J]. Anal Chem, 2013, 85(17):8061-8064. [56]Labib M, Ghobadloo SM, Khan N, et al. Four-way junction formation promoting ultrasensitive electrochemical detection of microRNA[J]. Anal Chem, 2013, 85(20):9422-9427. [57]Zhu W, Su X, Gao X, et al. A label-free and PCR-free electrochemical assay for multiplexed microRNA profiles by ligase chain reaction coupling with quantum dots barcodes[J]. Biosensors and Bioelectronics, 2014, 53:414-419. [58]Liu L, Xia N, Liu H, et al. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction[J]. Biosensors and Bioelectronics, 2014, 53:399-405. [59]Zhou Y, Wang M, Xu Z, et al. Investigation of the effect of phytohormone on the expression of microRNA-159a in Arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor[J]. Biosensors Bioelectronics, 2014, 54:244-250. [60] Shim WB, Mun H, Joung HA, et al. Chemiluminescence competi-tive aptamer assay for the detection of aflatoxin B1 in corn samples[J]. Food Control, 2014, 36(1):30-35. [61]Mun H, Jo EJ, Li T, et al. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer(CRET)using DNAzyme-linked aptamers[J]. Biosensors and Bioelectro-nics, 2014, 58:308-313. [62] 段颖芬. 鼠伤寒沙门氏菌适配体的筛选及应用研究[D]. 长沙:湖南师范大学, 2014. [63]Kellenberger CA, Wilson SC, Sales-Lee J, et al. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP[J]. Journal of the American Chemical Society, 2013, 135(13):4906-4909. [64]Duan N, Wu S, Dai S, et al. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles[J]. Microchimica Acta, 2014, 182(5-6):917-923. [65]Kim LH, Yu HW, Kim YH, et al. Potential of fluorophore labeled aptamers for Pseudomonas aeruginosa detection in drinking water[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(2):165-171. [66]Le L, Dong X, Xinkai P, et al. Aptamer biosensor for Streptococcus hemolyticus detection based on fluorescence quenching by gold nanoparticles[J]. African Journal of Microbiology Research, 2012, 6(45):7230-7236. [67]Di Primo C, Dausse E, Toulmé JJ. Surface plasmon resonance investigation of RNA aptamer-RNA ligand interactions[M]//Therapeutic Oligonucleotides. Humana Press, 2011:279-300. [68]Tombelli S, Minunni M, Luzi E, et al. Aptamer-based biosensors for the detection of HIV-1 Tat protein[J]. Bioelectrochemistry, 2005, 67(2):135-141. [69]Lei P, Tang H, Ding S, et al. Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification[J]. Microchimica Acta, 2015, 182(1-2):289-296. [70]Zhang H, Ma X, Liu Y, et al. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus[J]. Biosensors and Bioelectronics, 2015, 74:872-877. [71]Negri P, Kage A, Nitsche A, et al. Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS[J]. Chemical Communications, 2011, 47(30):8635-8637. [72]Ravindranath SP, Wang Y, Irudayaraj J. SERS driven cross-platform based multiplex pathogen detection[J]. Sensors and Actuators B:Chemical, 2011, 152(2):183-190. [73]Cheng AKH, Sen D, Yu HZ. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules[J]. Bioelectrochemistry, 2009, 77(1):1-12. [74]Luo C, Lei Y, Yan L, et al. A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111[J]. Electroanalysis, 2012, 24(5):1186-1191. [75]Labib M, Zamay AS, Kolovskaya OS, et al. Aptamer-based viability impedimetric sensor for bacteria[J]. Analytical Chemistry, 2012, 84(21):8966-8969. [76]Urmann K, Walter JG, Scheper T, et al. Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds[J]. Analytical Chemistry, 2015, 87(3):1999-2006. [77]Zelada-Guillén GA, Riu J, Düzgün A, Rius FX.Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor[J]. Angew Chem Int Ed Engl, 2009, 48(40):7334-7337. [78] Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, et al. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers[J]. Biosens Bioelectron, 2012, 1:226-232. [79]So HM, Park DW, Jeon EK, et al. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors[J]. Small, 2008, 2:197-201. [80]Zelada-Guillén GA, Blondeau P, Rius FX, et al. Carbon nanotube-based aptasensors for the rapid and ultrasensitive detection of bacteria[J]. Methods, 2013, 63(3):233-238. [81]Ozalp VC, Bayramoglu G, Erdem Z, et al. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation[J]. Analytica Chimica Acta, 2015, 853:533-540. |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[3] | 张雪萍, 鲁雨晴, 张月倩, 李晓娟. 植物细胞外囊泡及其分析技术的进展[J]. 生物技术通报, 2023, 39(5): 32-43. |
[4] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[5] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[6] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[7] | 胡海洋, 应婉琴, 何军, 吕芷贤, 谢小平, 邓仲良. 酶促重组等温扩增实时荧光法快速检测肺炎支原体方法的建立及应用[J]. 生物技术通报, 2022, 38(9): 264-270. |
[8] | 刘娜, 焦京琳, 饶正华. 短链脂肪酸在动物样本中的检测方法研究进展[J]. 生物技术通报, 2022, 38(8): 84-91. |
[9] | 周子琦, 张洋子, 兰欣悦, 刘洋儿, 朱龙佼, 许文涛. 发光核酸适配体的筛选及应用[J]. 生物技术通报, 2022, 38(5): 240-247. |
[10] | 朱秋雨, 段绪果. L-天冬氨酸-α-脱羧酶的重组表达、定点突变及高通量检测方法的建立[J]. 生物技术通报, 2022, 38(5): 269-278. |
[11] | 兰欣悦, 刘宁宁, 朱龙佼, 陈旭, 褚华硕, 李相阳, 段诺, 许文涛. 四环素双价适配体非酶免标记传感器[J]. 生物技术通报, 2022, 38(3): 276-284. |
[12] | 罗雪琮, 安梦楠, 吴元华, 夏子豪. 重组酶聚合酶扩增技术在植物病毒检测中的应用[J]. 生物技术通报, 2022, 38(2): 269-280. |
[13] | 刘宁宁, 王鑫昕, 兰欣悦, 褚华硕, 陈旭, 常世敏, 李腾飞, 许文涛. G-三链体可视化核酸传感器用于四环素的检测[J]. 生物技术通报, 2022, 38(10): 106-114. |
[14] | 孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139. |
[15] | 陈黎, 卢茜, 杨红兰, 张鹏, 何志旭. 基于高分辨率熔解曲线技术的CRISPR/Cas9介导的细胞基因突变快速检测研究[J]. 生物技术通报, 2022, 38(10): 90-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||