生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 132-139.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1493
孔德真(), 聂迎彬(), 徐红军, 崔凤娟, 穆培源, 田笑明()
收稿日期:
2021-12-02
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
孔德真,男,助理研究员,研究方向:小麦杂种优势利用;E-mail:基金资助:
KONG De-zhen(), NIE Ying-bin(), XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming()
Received:
2021-12-02
Published:
2022-10-26
Online:
2022-11-11
摘要:
为探讨杂交小麦强优势组合制种混播不同比例恢复系对制种产量、纯度及F1代产量的影响,以3个AL(Alborubrum Korn)型CMS(cytoplasmic male sterility)小麦杂交组合为材料,在不育系(母本♀)种子中混入不同比例的恢复系(父本♂)种子播种,研究了杂交制种的产量、纯度和F1代产量优势变化。结果表明:组合36A×2014AR5和002A×99AR142-1在混播不同比例恢复系制种时,混播混收制种产量随父本混入比例增加而提高,相应杂交种的种子纯度逐渐降低。当父本的混播比例为5%时,可生产出纯度为96%的杂交种,混播混收制种产量也较高;对2个杂交组合不同混播比例制种的F1代进行产量比较,混播混收制种产量均高于同组合行比制种的杂交种对照,混播比例分别为12%和9%时的F1代产量表现更显著;利用与位于染色体2A上的恢复基因(qRf-2A-1)连锁的SSR分子标记Wmc474检测,预测了不同混入比例下混播混收杂交种的种子纯度,同时与前期位于1B染色体上的恢复基因(qRf-1B-1)连锁的SSR标记Xbarc8建立的AL型三系杂交小麦杂交种纯度检测回归方程预测结果进行了比较,表明用2个分子标记建立的2个回归方程在混播恢复系制种的纯度鉴别中均可使用。
孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139.
KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat[J]. Biotechnology Bulletin, 2022, 38(10): 132-139.
杂交种理论纯度Theo- retical purity of hybrids/% | 混杂恢复系粒数Number of blended restorer lines | 杂交种粒数Hybrid seed number |
---|---|---|
100 | 0 | 100 |
97 | 3 | 97 |
94 | 6 | 94 |
91 | 9 | 91 |
88 | 12 | 88 |
85 | 15 | 85 |
82 | 18 | 82 |
表1 人为混入恢复系试验设计
Table 1 Artificial blended restorer line test design
杂交种理论纯度Theo- retical purity of hybrids/% | 混杂恢复系粒数Number of blended restorer lines | 杂交种粒数Hybrid seed number |
---|---|---|
100 | 0 | 100 |
97 | 3 | 97 |
94 | 6 | 94 |
91 | 9 | 91 |
88 | 12 | 88 |
85 | 15 | 85 |
82 | 18 | 82 |
混播比例 Mixed sowing proportion | 出苗率 Emergence ratio/% | ♂ 理论株数 ♂Theoretical plant number | ♂ 收获株数 ♂Harvested Plant number | 小区总产量 Total plot yield/g | ♂ 种子产量/g ♂ Seed yield/g | 杂交种产量 Hybrid yield/g | 比CK增产 Increased rate compared to CK/% | 杂交种比例 Hybrid proportion/% |
---|---|---|---|---|---|---|---|---|
3% | 51 | 36 | 29 | 1180.6 | 100.34 | 1080.26 | -16.19 | 91.50 |
6% | 54 | 72 | 58 | 1836 | 200.68 | 1635.32 | 26.86 | 89.07 |
9% | 56 | 108 | 87 | 2339 | 301.02 | 2037.98 | 58.1 | 87.13 |
12% | 56 | 144 | 117 | 1983 | 404.82 | 1578.18 | 22.43 | 79.59 |
15% | 54 | 180 | 146 | 2376 | 505.16 | 1870.84 | 45.14 | 78.74 |
CK | 53 | 210 | 170 | 1878 | 589 | 1289 | — | 100.00 |
表2 组合1混播不同比例恢复系对混播混收制种产量的影响(2018年)
Table 2 Effects of different mixed sowing ratios of male parents in combination 1 on the yield of seed production via mixed sowing and mixed harvesting(2018)
混播比例 Mixed sowing proportion | 出苗率 Emergence ratio/% | ♂ 理论株数 ♂Theoretical plant number | ♂ 收获株数 ♂Harvested Plant number | 小区总产量 Total plot yield/g | ♂ 种子产量/g ♂ Seed yield/g | 杂交种产量 Hybrid yield/g | 比CK增产 Increased rate compared to CK/% | 杂交种比例 Hybrid proportion/% |
---|---|---|---|---|---|---|---|---|
3% | 51 | 36 | 29 | 1180.6 | 100.34 | 1080.26 | -16.19 | 91.50 |
6% | 54 | 72 | 58 | 1836 | 200.68 | 1635.32 | 26.86 | 89.07 |
9% | 56 | 108 | 87 | 2339 | 301.02 | 2037.98 | 58.1 | 87.13 |
12% | 56 | 144 | 117 | 1983 | 404.82 | 1578.18 | 22.43 | 79.59 |
15% | 54 | 180 | 146 | 2376 | 505.16 | 1870.84 | 45.14 | 78.74 |
CK | 53 | 210 | 170 | 1878 | 589 | 1289 | — | 100.00 |
混播比例 Mixing proportion | 出苗率 Emergence ratio/% | ♂收获穗数♂ Harvested spikelets | ♀收获穗数 ♀ Harvested spikelets | F0田间纯度 F0 field purity/% | ♀千粒重 ♀ Weight of 1 000 grains/g | ♂千粒重 ♂ Weight of 1 000 grains/g | 杂交制种产量 Hybrid seed yield/g | 比CK增产 Increase rate compared to CK/% |
---|---|---|---|---|---|---|---|---|
3% | 57.0 | 39 | 3 659 | 98.94 | 43.99 | 39.26 | 166.00 | 40.68 |
6% | 53.4 | 77 | 3 381 | 97.77 | 41.71 | 37.6 | 171.35 | 45.21 |
9% | 61.3 | 134 | 3 364 | 96.17 | 41.35 | 39.54 | 193.60 | 64.07 |
12% | 62.5 | 213 | 3 387 | 94.08 | 40.59 | 39.66 | 291.10 | 146.69 |
CK | 64.8 | 475 | 3 627 | 100.00 | 41.50 | 39.59 | 118.00 | — |
表3 组合2不同混播恢复系比例对杂交种制种产量的影响(2019年)
Table 3 Effects of mixing ratio of male and female parents on the seed production yield of hybrid line in combination 2 (2019)
混播比例 Mixing proportion | 出苗率 Emergence ratio/% | ♂收获穗数♂ Harvested spikelets | ♀收获穗数 ♀ Harvested spikelets | F0田间纯度 F0 field purity/% | ♀千粒重 ♀ Weight of 1 000 grains/g | ♂千粒重 ♂ Weight of 1 000 grains/g | 杂交制种产量 Hybrid seed yield/g | 比CK增产 Increase rate compared to CK/% |
---|---|---|---|---|---|---|---|---|
3% | 57.0 | 39 | 3 659 | 98.94 | 43.99 | 39.26 | 166.00 | 40.68 |
6% | 53.4 | 77 | 3 381 | 97.77 | 41.71 | 37.6 | 171.35 | 45.21 |
9% | 61.3 | 134 | 3 364 | 96.17 | 41.35 | 39.54 | 193.60 | 64.07 |
12% | 62.5 | 213 | 3 387 | 94.08 | 40.59 | 39.66 | 291.10 | 146.69 |
CK | 64.8 | 475 | 3 627 | 100.00 | 41.50 | 39.59 | 118.00 | — |
混种比例Mixing proportion | ♀粒数 ♀Grain number | ♂粒数 ♂Grain number | 总粒数 Total grain number | F1种子纯度F1 seed purity/% | 制种产量Hybrid seed yield/kg |
---|---|---|---|---|---|
3% | 87 816 | 1 794 | 89 610 | 97.99 | 3.83 |
4% | 85 078 | 2 217 | 87 295 | 97.46 | 3.83 |
5% | 84 412 | 3 105 | 87 517 | 96.45 | 3.84 |
6% | 81 144 | 3 542 | 84 686 | 95.82 | 3.62 |
9% | 80 736 | 6 164 | 86 900 | 92.91 | 3.71 |
12% | 81 288 | 9 798 | 91 086 | 89.24 | 3.89 |
CK 3♂∶9♀ | 87 048 | 100.00 | 3.61 |
表4 组合2不育系按60%自然异交率和试验收获穗数测算制种纯度和制种产量
Table 4 Seed production purity and seed yield of the sterile line of combination 2 calculated based on the 60% natural outcrossing rate and the number of ears harvested in the experiment
混种比例Mixing proportion | ♀粒数 ♀Grain number | ♂粒数 ♂Grain number | 总粒数 Total grain number | F1种子纯度F1 seed purity/% | 制种产量Hybrid seed yield/kg |
---|---|---|---|---|---|
3% | 87 816 | 1 794 | 89 610 | 97.99 | 3.83 |
4% | 85 078 | 2 217 | 87 295 | 97.46 | 3.83 |
5% | 84 412 | 3 105 | 87 517 | 96.45 | 3.84 |
6% | 81 144 | 3 542 | 84 686 | 95.82 | 3.62 |
9% | 80 736 | 6 164 | 86 900 | 92.91 | 3.71 |
12% | 81 288 | 9 798 | 91 086 | 89.24 | 3.89 |
CK 3♂∶9♀ | 87 048 | 100.00 | 3.61 |
图2 不同混播比例对杂种优势的影响 不同字母表示 0.05 水平上显著差异
Fig. 2 Effects of different mixing ratio on heterosis Different letters indicates significant difference at the 0.05 level
杂种理论纯度 Theoretical purity of hybrid/% | 25粒混恢复系粒数理论值Theoretical value of 25 mixed restorer lines | 显恢复系带粒数实际值Actual value of restorer stripe |
---|---|---|
100 | 0 | 0 |
97 | 0.75 | 1 |
94 | 1.5 | 3 |
91 | 2.25 | 3 |
88 | 3 | 3 |
85 | 3.75 | 4 |
82 | 4.5 | 6 |
回归方程Regression equation y =0.285 7+1.142 8x 相关系数Correlation coefficient r = 0.948 6 * * |
表5 杂交种混杂不同比例恢复系种子分子标记纯度分析
Table 5 Molecular marker purity analysis of restorer mixed with different proportions of hybrid seeds
杂种理论纯度 Theoretical purity of hybrid/% | 25粒混恢复系粒数理论值Theoretical value of 25 mixed restorer lines | 显恢复系带粒数实际值Actual value of restorer stripe |
---|---|---|
100 | 0 | 0 |
97 | 0.75 | 1 |
94 | 1.5 | 3 |
91 | 2.25 | 3 |
88 | 3 | 3 |
85 | 3.75 | 4 |
82 | 4.5 | 6 |
回归方程Regression equation y =0.285 7+1.142 8x 相关系数Correlation coefficient r = 0.948 6 * * |
图3 采用Wmc474引物检测混掺6%恢复系电泳图 M:Marker1;1:杂交种;2:恢复系99AR144-1;3-27:杂交种样本
Fig. 3 Electrophoretic diagram of blend 6% restorer line detected by Wmc474 primer M:Marker1. 1:Hybrid seed. 2:Restorer 99AR144-1. 3-27:Hybrid samples
[1] | Gupta PK, Balyan HS, Gahlaut V, et al. Hybrid wheat:past, present and future[J]. TAG Theor Appl Genet Theor Und Angewandte Genet, 2019, 132(9):2463-2483. |
[2] |
Kempe K, Rubtsova M, Gils M. Split-gene system for hybrid wheat seed production[J]. Proc Natl Acad Sci USA, 2014, 111(25):9097-9102.
doi: 10.1073/pnas.1402836111 URL |
[3] |
Longin CFH, Gowda M, Mühleisen J, et al. Hybrid wheat:quantitative genetic parameters and consequences for the design of breeding programs[J]. Theor Appl Genet, 2013, 126(11):2791-2801.
doi: 10.1007/s00122-013-2172-z URL |
[4] | 杨木军, 李绍祥, 刘琨, 等. 云南温光敏两系杂交小麦制种技术研究[J]. 麦类作物学报, 2006, 26(4):27-31. |
Yang MJ, Li SX, Liu K, et al. Techniques of thermo-photo sensitive two-line hybrid wheat F1 seed production in Yunnan[J]. J Triticeae Crops, 2006, 26(4):27-31. | |
[5] | 赵昌平, 王新, 张风廷, 等. 杂种小麦的研究现状与光温敏二系法[J]. 北京农业科学, 1999(2):3-5. |
Zhao CP, Wang X, Zhang FT, et al. Research status of hybrid wheat and photothermal-sensitive two-line method[J]. Beijing Agric Sci, 1999(2):3-5. | |
[6] | 聂迎彬, 田笑明, 韩新年, 等. 高产优质杂交小麦新品种—新冬43号[J]. 麦类作物学报, 2014, 34(11):1450. |
Nie YB, Tian XM, Han XN, et al. A new hybrid wheat variety with high yield and good quality-Xindong 43[J]. J Triticeae Crops, 2014, 34(11):1450. | |
[7] |
Akel W, Rapp M, Thorwarth P, et al. Hybrid durum wheat:heterosis of grain yield and quality traits and genetic architecture of anther extrusion[J]. Theor Appl Genet, 2019, 132(4):921-932.
doi: 10.1007/s00122-018-3248-6 URL |
[8] | Wilson P. Hybrid wheat development in Australia and a proposal for hybrid wheat blends for developing countries. In:Book of abstracts[C]// The Genetics and Exploitation of Heterosis in Crops. Mexico:CIMMYT, 1997:216-217. |
[9] | Koekemoer FP, Van Eeden E, Bonjean AP. An overview of hybrid wheat production in South Africa and review of current worldwide wheat hybrid developments[M]. Bonjean AP, Angus WJ, Van Ginkel M. The World Wheat Book: A History of Plant Breeding. Paris:Lavoisier, 2011, 907-950. |
[10] | 宋喜悦, 马翎健, 胡银岗, 等. 杂交小麦混合制种新体系的初步研究[J]. 麦类作物学报, 2002, 22(4):31-34. |
Song XY, Ma LJ, Hu YG, et al. Study on new system of producing hybrid wheat seed by mixing male sterile line and restorer line[J]. Acta Tritical Crops, 2002, 22(4):31-34. | |
[11] |
Wang LX, Qiu J, Chang LF, et al. Assessment of wheat variety distinctness using SSR markers[J]. J Integr Agric, 2015, 14(10):1923-1935.
doi: 10.1016/S2095-3119(15)61057-7 URL |
[12] | Tiwari A, Mishra DK. Application of SSR markers for purity testing of hybrid wheat(Triticum aestivum L.)[J]. Int Res J Pure Appl Chem, 2020:31-40. |
[13] |
Sharp PJ, Kreis M, Shewry PR, et al. Location of β-amylase sequences in wheat and its relatives[J]. Theor Appl Genet, 1988, 75(2):286-290.
doi: 10.1007/BF00303966 URL |
[14] | 崔凤娟, 田笑明, 韩新年, 等. 小麦AL型胞质不育系育性恢复基因的遗传分析[J]. 石河子大学学报:自然科学版, 2009, 27(2):190-193. |
Cui FJ, Tian XM, Han XN, et al. Genetic analysis of fertility restoring genes for the AL-type cytoplasm male sterility in wheat[J]. J Shihezi Univ Nat Sci, 2009, 27(2):190-193. | |
[15] | 桂安胜, 聂迎彬, 马丽, 等. 小麦雄性不育系AL18A育性恢复基因的QTL定位[J]. 麦类作物学报, 2017, 37(1):1-6. |
Gui AS, Nie YB, Ma L, et al. Mapping QTLs of fertility restoring genes for AL-type male sterility line AL18Ain wheat[J]. J Triticeae Crops, 2017, 37(1):1-6. | |
[16] | 田笑明, 聂迎彬, 刘小芳. 三系杂交小麦种子纯度分子标记及其引物对和应用:CN105671041A[P]. 2016-06-15. |
Tian XM, Nie YB, Liu XF. Triple crossing wheat seed purity molecular marker and primer pair and application thereof:CN105671041A[P]. 2016-06-15. | |
[17] |
Nie YB, Kong DZ, Cui FJ, et al. Mixing AL type male sterile line and restorer line to producing wheat hybrid and molecular identification of hybrid line purity[J]. Seed Science and Technology, 2021, 49(3):1-11.
doi: 10.15258/sst.2021.49.1.01 URL |
[18] | 龚德平, 谌鑫, 冯锦刚, 等. 两系杂交小麦父母本混播制种试验研究[J]. 湖北农业科学, 2003, 42(5):22-23. |
Gong DP, Chen X, Feng JG, et al. Experimental study on hybrid seed production of two line hybrid wheat[J]. Hubei Agric Sci, 2003, 42(5):22-23. | |
[19] | Whitford, Fleury, Reif, et al. Hybrid breeding in wheat:technologies to improve hybrid wheat seed production[J]. Journal of Experimental Botany, 2013, 18(64):5411-5428. |
[20] | 方宣钧, 刘思衡, 江树业. 品种纯度和真伪的DNA分子标记鉴定及其应用[J]. 农业生物技术学报, 2000, 8(2):106-110. |
Fang XJ, Liu SH, Jiang SY. Progress on identification of seed purity and authenticity using DNA molecular markers[J]. J Agric Biotechnol, 2000, 8(2):106-110. | |
[21] | 权文利, 陈志国, 连利叶, 等. 不同株高品种混播对青海春小麦产量的影响[J]. 西北农业学报, 2013, 22(8):15-20. |
Quan WL, Chen ZG, Lian LY, et al. Effect of mixed planting with height-differentiated varieties on spring wheat yield in Qinghai plateau[J]. Acta Agric Boreali Occidentalis Sin, 2013, 22(8):15-20. |
[1] | 肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48. |
[2] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
[3] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉同源多倍体后代筛选及性状鉴定[J]. 生物技术通报, 2022, 38(5): 64-73. |
[4] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[5] | 孙平勇, 张武汉, 舒服, 何强, 张莉, 彭志荣, 邓华凤. 香稻品种OsBADH2突变位点分析及其功能标记的开发[J]. 生物技术通报, 2021, 37(4): 1-7. |
[6] | 王衍莉, 杨义明, 范书田, 赵滢, 许培磊, 路文鹏, 李昌禹. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析[J]. 生物技术通报, 2021, 37(1): 189-197. |
[7] | 赵国龙, 林春晶, 金东淳, 张春宝. 主要农作物细胞质雄性不育系育性恢复基因研究进展[J]. 生物技术通报, 2020, 36(1): 116-125. |
[8] | 范磊, 戴冬洋, 熊安平, 盛云燕, 于明珠, 秦瑛聪. 分子标记辅助选择不同甜瓜性别植株[J]. 生物技术通报, 2019, 35(4): 195-200. |
[9] | 杨妍妍, 霍雨猛, 吴雄, 刘冰江. 洋葱雄性不育分子标记在单倍体鉴定中的应用[J]. 生物技术通报, 2019, 35(12): 169-174. |
[10] | 王平, 王春语, 张丽霞, 丛玲, 朱振兴, 陆晓春. 利用重测序技术开发高粱多态性SSR分子标记[J]. 生物技术通报, 2019, 35(11): 217-223. |
[11] | 王晓燚, 孔德晶, 艾鹏飞. 基于SRAP和SSR标记构建的杏扁遗传连锁图谱[J]. 生物技术通报, 2018, 34(11): 103-110. |
[12] | 任梦云, 陈彦君, 张盾, 杜乐山, 刘方, 关潇, 张银东. ISSR标记技术在药用植物资源中的研究进展及应用[J]. 生物技术通报, 2017, 33(4): 63-69. |
[13] | 蔡之军,李金军,周德银,富昊伟. 利用分子标记技术改良粳稻不育系的柱头外露率[J]. 生物技术通报, 2016, 32(3): 52-57. |
[14] | 刘国圣, 张大乐. 功能性分子标记在小麦育种中的应用[J]. 生物技术通报, 2016, 32(11): 18-29. |
[15] | 刘丽萍, 张东智, 张冲, 陈金焕. 黑果枸杞抗逆性及栽培育种研究进展[J]. 生物技术通报, 2016, 32(10): 118-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||