[1] Farr SB, Kogoma T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium[J]. Microbiol Rev, 1991, 55(4):561-585. [2] Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci, 2000, 57(5):779-795. [3] Rodriguez Milla MA, Maurer A, Rodriguez Huete A, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. Plant J, 2003, 36(5):602-615. [4] Grene R. Oxidative stress and acclimation mechanisms in plants[M]. The Arabidopsis Book, 2002:e0036. [5] Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant Cell Physiol, 2000, 41(11):1229-1234. [6] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410. [7] Margis R, Dunand C, Teixeira FK, et al. Glutathione peroxidase family-an evolutionary overview[J]. FEBS J, 2008, 275(15):3959-3970. [8] Mills GC. Hemoglobin catabolism I Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown[J]. J Biol Chem, 1957, 229(1):189-197. [9] Brigelius-Flohé R, Maiorino M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5):3289-3303. [10] Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis[J]. Mol Cell Endocrinol, 2004, 216(1-2):31-39. [11] Herbette S, Roeckel-Drevet P, Drevet JR. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers[J]. FEBS J, 2007, 274(9):2163-2180. [12] Thisse C, Degrave A, Kryukov GV, et al. Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish[J]. Gene Expr Patterns, 2003, 3(4):525-532. [13] Criqui MC, Jamet E, Parmentier Y, et al. Isolation and character-ization of a plant cDNA showing homology to animal glutathione peroxidases[J]. Plant Mol Biol, 1992, 18(3):623-627. [14] Sugimoto M, Sakamoto W. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stresss[J]. Gene Genet Syst, 1997, 72(5):311-316. [15] Li W, Feng H, Fan J, et al. Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa[J]. Biochim Biophys Acta, 2000, 1-2:225-230. [16] Depege N, Drevet J, Boyer N. Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-proteins[J]. Eur J Biochem, 1998, 253(2):445-451. [17] Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, et al. Regulation of stress-induced phospholipid hydroperoxide glutathione peroxidase expression in citrus[J]. Planta, 1999, 4:469-477. [18] Sugimoto M, Furui S, Suzuki Y. Molecular cloning and characterization of a cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase from spinach[J]. Biosci Biotechnol Biochem, 1997, 61(8):1379-1381. [19] 马亭亭, 周宜君, 高飞, 等. 盐芥谷胱甘肽过 氧化物酶基因(THGPX6)的克隆及表达分析[J]. 植物遗传资源学报, 2012, 13(2):252-258. [20] Maiorino M, Aumann KD, Brigelius-Flohé R, et al. Probing the presumed catalytic triade of selenium-containing peroxidasesby mutational analysis of phospholipid hydroperoxide glutathione peroxidase(PhGPx)[J]. Biol Chem Hoppe Seyler, 1995, 376 (11):651-660. [21] Hazebrouck S, Camoin L, Faltin Z, et al. Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli[J]. J Biol Chem, 2000, 37:28715-28721. [22] Navrot N, Collin V, Gualberto J, et al. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellularcompartments and regulated during biotic and abiotic stresses[J]. Plant Physiol, 2006, 142(4):1364-1379. [23] Maiorino M, Ursini F, Bosello V, et al. The thioredoxin specificity of Drosophila GPx:a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases[J]. J Mol Biol, 2007, 365(4):1033-1046. [24] Herbette S, Lenne C, Leblanc N, et al. Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities[J]. Eur J Biochem, 2002, 269(9):2414- 2420. [25] Iqbal A, Yabuta Y, Takeda T, et al. Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana[J]. FEBS J, 2006, 273(24):5589-5597. [26] Jung BG, Lee KO, Lee SS, et al. A Chinese cabbage cDNA with high sequence identity to phospholipids hydroperoxide glutathione peroxidase encodes a novel isoform of thioredoxin-dependent peroxidase[J]. J Biol Chem, 2002, 277(15):12572-12578. [27] Koh CS, Didierjean C, Navrot N, et al. Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases:insights into redox-driven conformational changes[J]. J MolBiol, 2007, 370(3):512-529. [28] Gaber A, Ogata T, Maruta T, et al. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage inthe nucleus and cytosol[J]. Plant Cell Physiol, 2012, 53(9):1596-1606. [29] Zhai CZ, Zhao L, Yin LJ, et al. Two wheat glu-tathione peroxidase genes whose products are located in chloroplastsimprove salt and H 2 O 2 tolerances in Arabidopsis[J]. PLoS One, 2013, 8(10):e73989. [30] Das KC, White CW. Redox systems of the cell:possible links and implications[J]. Proc Natl Acad Sci USA, 2002, 99(15):9617-9618. [31] Gelhaye E, Rouhier N, Gérard J, et al. A specific form of thioredoxin h occurs in plant mitochondria and regulates alternative oxidase[J]. Proc Natl Acad Sci USA, 2004, 40:14545-14550. [32] Mullineaux PM, Karpinski S, Jiménez A, et al. Identification of cDNAS encoding plastid-targeted glutathione peroxidase[J]. Plant J, 1998, 13(3):375-379. [33] Yang XD, Li WJ, Liu JY. Isolation and characterization of a novel PHGPx gene in Raphanus sativus[J]. Biochim Biophys Acta, 2005, 1728(3):199-205. [34] Yang XD, Dong CJ, Liu JY. A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase:its precise localization and higher enzymatic activity[J]. Plant Mol Biol, 2006, 62(6):951-962. [35] Chang CC, Slesak I, Jordá L, et al. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses[J]. Plant Physiol, 2009, 150(2):670-683. [36] Ferro M, Salvi D, Brugière S, et al. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana[J]. Mol Cell Proteomics, 2003, 2(5):325-345. [37] Pelitier JB, Ytterberg AJ, Sun Q, et al. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy[J]. J Biol Chem, 2004, 279(47):49367-49383. [38] Zybailov B, Rutschow H, Friso G, et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome[J]. PLoS One, 2008, 3(4):e1994. [39] Miao Y, Lv D, Wang P, et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acidand drought stress responses[J]. Plant Cell, 2006, 18(10):2749-2766. [40] Holland D, Ben-Hayyim G, Faltin Z, et al. Molecular characterization of salt-stress-associated protein in citrus:protein and cDNA sequence homology to mammalian glutathione peroxidases[J]. Plant Mol Biol, 1993, 21(5):923-927. [41] Beeor-Tzahar T, Ben-Hayyim G, Holland D, et al. A stress-associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase[J]. FEBS Lett, 1995, 366(2-3):151-155. [42] Kim YJ, Jang MG, Noh HY, et al. Molecular characterization of two glutathione peroxidase genes of Panax ginseng and their expression analysis against environmental stresses[J]. Gene, 2014, 1:33-41. [43] Ferreira Neto JRC, Pandolfi V, Guimaraes FC, et al. Early transcriptional response of soybean contrasting accessions to root dehydration[J]. PLoS One, 2013, 8(12):e83466. [44] Churin Y, Schilling S, Börner T. A gene family encoding glutathione peroxidase homologues in Hordeum vulgare(barley)[J]. FEBS Lett, 1999, 459(1):33-38. [45] Herbette S, Menn AL, Rousselle P, et al. Modification of photosyn- thetic regulation in tomato overexpressing glutathione peroxidase [J]. Biochim Biophys Acta, 2005, 1-2:108-118. [46] Herbette S, de Labrouhe DT, Drevet JR, et al. Transgenic tomatoes showing higher glutathione peroxydase antioxidant activity are more resistant to anabiotic stress but more susceptible to biotic stresses[J]. Plant Sci, 2011, 180(3):548-553. [47] Roxas VP, Lodhi SA, Garrett DK, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant Cell Physiol, 2000, 41(11):1229-1234. [48] Yoshimura K, Miyao K, Gaber A, et al. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in cytosol or chloroplast[J]. Plant J, 2004, 37(1):21-33. [49] Passaia G, Queval G, Bai J, et al. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana[J]. J Exp Bot, 2014, 65(5):1403-1413. [50] Pagnussat GC, Yu HJ, Ngo QA, et al. Genetic and molecular identification of genes required for female gametophyte developmentand function in Arabidopsis[J]. Development, 2005, 132(3):603-614. [51] Passaia G, Spagnolo Fonini L, Caverzan A, et al. The mitochondrial glutathione peroxidase GPX3 is essential for H 2 O 2 homeostasis and root and shoot development in rice[J]. Plant Sci, 2013, 208:93-101. [52] Chen S, Vaghchhipawala Z, Li W, et al. Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by Bax andoxidative stresses in yeast and plants[J]. Plant Physiol, 2004, 135(3):1630-1641. [53] Gao F, Chen J, Ma T, et al. The glutathione peroxidase gene family in Thellungiella salsuginea:genome-wide identification, classification, andgene and protein expression analysis under stress conditions[J]. Int J Mol Sci, 2014, 15(2):3319-3335. [54] Bela K, Horváth E, Gallé Á, et al. Plant glutathione peroxidases:emerging role of the antioxidant enzymes in plant development and stress responses[J]. J Plant Physiol, 2015, 176:192-201. |