生物技术通报 ›› 2016, Vol. 32 ›› Issue (9): 14-22.doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.003
刘丽娟, 高辉
收稿日期:
2016-03-03
出版日期:
2016-09-25
发布日期:
2016-10-10
作者简介:
刘丽娟,女,硕士研究生,研究方向:环境科学与植物生理学;E-mail:1282019384@qq.com
基金资助:
LIU li-juan, GAO Hui
Received:
2016-03-03
Published:
2016-09-25
Online:
2016-10-10
摘要: TCP 基因编码植物特异性的转录因子,含有一个bHLH motif,能够与DNA结合或者产生蛋白质与蛋白质的互作。TCP基因家族在单子叶植物中有5个成员,在双子叶植物中有超过20个成员。基因的复制和多样化进化出了两类有轻微不同TCP domain 的TCP基因家族。越来越多关于TCP基因功能的研究使得将TCP基因作为工具,调整植物生长模式,产生新的农业学性状成为可能。简要概括这一家族当前的进化、调控、蛋白的生化特性,以及部分成员的生化功能,特别是在控制发育组织的细胞增殖方面。旨在为更好的调节植物的生长模式和调控植物的生理特性的研究提供思路。
刘丽娟, 高辉. TCP家族基因研究进展[J]. 生物技术通报, 2016, 32(9): 14-22.
LIU li-juan, GAO Hui. Research Progress on the Family of TCP Genes[J]. Biotechnology Bulletin, 2016, 32(9): 14-22.
[1] Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. The Plant Cell Online, 1997, 9(9):1607-1619. [2] Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2):215-222. [3] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. 1997: [4] Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799. [5] Floyd SK, Bowman JL. The ancestral developmental tool kit of land plants[J]. International Journal of Plant Sciences, 2007, 168(1):1-35. [6] Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. Journal of Molecular Evolution, 2007, 65(1):23-33. [7] Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investig-ation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiology, 2003, 131(3):1042-1053. [8] Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[J]. Systematics Association Special Volume, 2002, 65:247-266. [9] Damerval C, Le Guilloux M, Jager M, et al. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiology, 2007, 143(2):759-772. [10] Gübitz T, Caldwell A, Hudson A. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives[J]. Molecular Biology and Evolution, 2003, 20(9):1537-1544. [11] Howarth DG, Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proceedings of the National Academy of Sciences, 2006, 103(24):9101. [12] Kölsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceaes. str[J]. Plant Biology, 2006, 8(5):680-687. [13] Reeves PA, Olmstead RG. Evolution of the TCP gene family in Asteridae:cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution[J]. Molecular Biology and Evolution, 2003, 20(12):1997-2009. [14] Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105. [15] Xiong Y, Liu T, Tian C, et al. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1):191-203. [16] Yao X, Ma H, Wang J, et al. Genome-Wide Comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa[J]. Journal of Integrative Plant Biology, 2007, 49(6):885-897. [17] Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal, 2002, 30(3):337-348. [18] Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955):257-263. [19] Crawford BCW, Nath U, Carpenter R, et al. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J]. Plant Physiology, 2004, 135(1):244-253. [20] Efroni I, Blum E, Goldshmidt A, et al. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development[J]. The Plant Cell Online, 2008, 20(9):2293-2306. [21] Koyama T, Furutani M, Tasaka M, et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis[J]. The Plant Cell Online, 2007, 19(2):473-484. [22] Nath U, Crawford BCW, Carpenter R, et al. Genetic control of surface curvature[J]. Science, 2003, 299(5611):1404. [23] Ori N, Cohen AR, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6):787-791. [24] Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9):e230. [25] Hu WJ, Zhang SH, Zhao Z, et al. The analysis of the structure and expression of OsTB1 gene in rice[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(6):507-514. [26] Hubbard L, McSteen P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte[J]. Genetics, 2002, 162(4):1927. [27] Lewis JM, Mackintosh CA, Shin S, et al. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development[J]. Plant Cell Reports, 2008, 27(7):1217-1225. [28] Peng HZ, Lin EP, Sang QL, et al. Molecular cloning, expression analyses and primary evolution studies of REV-and TB1-like genes in bamboo[J]. Tree Physiology, 2007, 27(9):1273-1281. [29] Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3):513-520. [30] Yuan Z, Gao S, Xue DW, et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiology, 2009, 149(1):235-244. [31] Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell Online, 2007, 19(2):458-472. [32] Finlayson SA. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1[J]. Plant and Cell Physiology, 2007, 48(5):667. [33] Poza-Carrión C, Aguilar-Martínez JA, Cubas P. Role of TCP gene BRANCHED1 in the control of shoot branching in Arabidopsis[J]. Plant Signaling & Behavior, 2007, 2(6):551. [34] Cubas P. Floral zygomorphy, the recurring evolution of a successful trait[J]. Bio Essays, 2004, 26(11):1175-1184. [35] Jabbour F, Nadot S, Damerval C. Evolution of floral symmetry:a state of the art[J]. Comptes Rendus Biologies, 2009, 332(2-3):219-231. [36] Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends in Plant Science, 2009, 14(3):147-154. [37] Feng X, Zhao Z, Tian Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13):4970. [38] Fukuda T, Yokoyama J, Maki M. Molecular evolution of cycloidea-like genes in Fabaceae[J]. Journal of Molecular Evolution, 2003, 57(5):588-597. [39] Qin LJ, Guo XZ, Feng XZ, et al. Cloning of LjCYC1 gene and nuclear localization of LjCYC1 protein in Lotus japonicus[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(5):523-532. [40] Wang Z, Luo Y, Li X, et al. Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proceedings of the National Academy of Sciences, 2008, 105(30):10414. [41] Broholm SK, Tähtiharju S, Laitinen RAE, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proceedings of the National Academy of Sciences, 2008, 105(26):9117. [42] Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Molecular Biology and Evolution, 2008, 25(7):1260-1273. [43] Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116. [44] Citerne HL, Möller M, Cronk QCB. Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry[J]. Annals of Botany, 2000, 86(1):167. [45] Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161. [46] Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. Journal of Systematics and Evolution, 2008, 46(1):23-31. [47] Gao Q, Tao JH, Yan D, et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Development Genes and Evolution, 2008, 218(7):341-351. [48] Hileman LC, Baum DA. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae(Veronicaceae)[J]. Molecular Biology and Evolution, 2003, 20(4):591-600. [49] Hileman LC, Kramer EM, Baum DA. Differential regulation of symmetry genes and the evolution of floral morphologies[J]. Proceedings of the National Academy of Sciences, 2003, 100(22):12814. [50] Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376. [51] Moller M, Clokie M, Cubas P, et al. Integrating molecular phylogenies and developmental genetics:a Gesneriaceae case study[M]. Francis, London:Molecular Systematics and Plant Evolution. Taylor and 1999:375-402. [52] Picó F, Möller M, Ouborg N, et al. Single nucleotide polymorphisms in the coding region of the developmental gene Gcyc in natural populations of the relict Ramonda myconi(Gesneriaceae)[J]. Plant Biology, 2002, 4(5):625-629. [53] Preston JC, Kost MA, Hileman LC. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies[J]. New Phytologist, 2009, 182(3):751-762. [54] Smith JF, Hileman LC, Powell MP, et al. Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae(Gesneriaceae)[J]. Molecular Phylogenetics and Evolution, 2004, 31(2):765-779. [55] Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evolutionary Biology, 2009, 9(1):244. [56] Vieira CP, Vieira J, Charlesworth D. Evolution of the cycloidea gene family in Antirrhinum and Misopates[J]. Molecular Biology and Evolution, 1999, 16(11):1474-1483. [57] Wang CN, Möller M, Cronk QCB. Phylogenetic position of Titanotrichum oldhamii(Gesneriaceae)inferred from four different gene regions[J]. Systematic Botany, 2004, 29(2):407-418. [58] Wang L, Gao Q, Wang YZ, et al. Isolation and sequence analysis of two CYC-like genes, SiCYC1A and SiCYC1B, from zygomorphic and actinomorphic cultivars of Saintpaulia ionantha(Gesneriaceae)[J]. Acta Phytotaxonomica Sinica, 2006, 44(4):353-361. [59] Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytologist, 2008, 178(3):532-543. [60] Hervé C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3):1462-1477. [61] Li C, Potuschak T, Colón-Carmona A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12978. [62] Pruneda-Paz JL, Breton G, Para A, et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock[J]. Science, 2009, 323(5920):1481. [63] Trémousaygue D, Garnier L, Bardet C, et al. Internal telomeric repeats and ‘TCP domain’protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells[J]. The Plant Journal, 2003, 33(6):957-966. [64] Welchen E, Gonzalez DH. Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery[J]. Plant Physiology, 2006, 141(2):540-545. [65] Masuda HP, Cabral LM, De Veylder L, et al. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription[J]. The EMBO Journal, 2008, 27(20):2746-2756. [66] Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22):5093-5101. [67] Koroleva OA, Tomlinson ML, Leader D, et al. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions[J]. The Plant Journal, 2005, 41(1):162-174. [68] Suzuki T, Sakurai K, Ueguchi C, et al. Two types of putative nuclear factors that physically interactwith histidine-containing phosphotransfer(Hpt)domains, signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2001, 42(1):37. [69] Baba K, Nakano T, Yamagishi K, et al. Involvement of a nuclear-encoded basic helix-loop-helix protein in transcription of the light-responsive promoter ofpsbD[J]. Plant Physiology, 2001, 125(2):595-603. [70] Wagner R, Pfannschmidt T. Eukaryotic transcription factors in plastids Bioinformatic assessment and implications for the evolution of gene expression machineries in plants[J]. Gene, 2006, 381:62-70. [71] Welchen E, Gonzalez DH. Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2. Evidence for the involvement of TCP-domain protein-binding elements in anther-and meristem-specific expression of the Cytc-1 gene[J]. Plant Physiology, 2005, 139(1):88-100. [72] Vandepoele K, Casneuf T, Van de Peer Y. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics[J]. Genome Biology, 2006, 7(11):R103. [73] Ito M, Iwase M, Kodama H, et al. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription[J]. The Plant Cell Online, 1998, 10(3):331-342. [74] Tatematsu K, Ward S, Leyser O, et al. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis[J]. Plant Physiology, 2005, 138(2):757-766. [75] Tremousaygue D, Manevski A, Bardet C, et al. Plant interstitial telomere motifs participate in the control of gene expression in root meristems[J]. The Plant Journal, 1999, 20(5):553-561. [76] Strayer C, Oyama T, Schultz TF, et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480):768. [77] Heery DM, Kalkhoven E, Hoare S, et al. A signature motif in transcriptional co-activators mediates binding to nuclear receptors[J]. Nature, 1997, 387(6634):733-736. [78] Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum[J]. Development, 2004, 131 (4):915. [79] Takeda T, Amano K, Ohto M, et al. RNA interference of the Arabi-dopsis putative transcription factor TCP16 gene results in abortion of early pollen development[J]. Plant Molecular Biology, 2006, 61(1):165-177. [80] Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1):42-52. [81] Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proceedings of the National Academy of Sciences, 2007, 104(42):16714. [82] Gaudin V, Lunness PA, Fobert PR, et al. The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene[J]. Plant Physiology, 2000, 122(4):1137-1148. [83] Ruuska SA, Girke T, Benning C, et al. Contrapuntal networks of gene expression during Arabidopsis seed filling[J]. The Plant Cell Online, 2002, 14(6):1191-1206. [84] López-Juez E, Dillon E, Magyar Z, et al. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis[J]. The Plant Cell Online, 2008, 20(4):947-968. [85] Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss[J]. The Plant Journal, 2005, 43(6):837-848. [86] Chung B, Simons C, Firth A, et al. Effect of 5’UTR introns on gene expression in Arabidopsis thaliana[J]. BMC Genomics, 2006, 7(1):120. [87] Kim MJ, Kim H, Shin JS, et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron[J]. Molecular Genetics and Genomics, 2006, 276(4):351-368. [88] Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions[J]. Science, 2007, 316(5830):1497. [89] Hiratsu K, Matsui K, Koyama T, et al. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis[J]. The Plant Journal, 2003, 34(5):733-739. |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[5] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[6] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[7] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[8] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[9] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[10] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[11] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[12] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[13] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[14] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[15] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||