[1] Cardona CA, Quintero JA, Paz IC. Production of bioethanol from sugarcane bagasse:status and perspectives[J] . Bioresource Technology, 2010, 101(13):4754-4766. [2] Chu BCH, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation[J] . Biotechnology Advances, 2007, 25(5):425-441. [3] Wahlbom CF, van Zyl WH, J?nsson LJ, et al. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS6054[J] . FEMS Yeast Research, 2003, 3(3):319-326. [4] Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae[J] . Applied and Environmental Microbiology, 2009, 75(8):2304-2311. [5] Zhou H, Cheng J, Wang BL, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J] . Metabolic Engineering, 2012, 14(6):611-622. [6] Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. II:inhibitors and mechanisms of inhibition[J] . Bioresource Technology, 2000, 74(1):25-33. [7] Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J] . Bioresource Technology, 2000, 74(1):17-24. [8] Moysés DN, Reis VCB, Almeida JRM, et al. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J] . International Journal of Molecular Sciences, 2016, 17(3):207. [9] Demeke MM, Dumortier F, Li Y, et al. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production[J] . Biotechnology for Biofuels, 2013, 6(1):120. [10] Ask M, Bettiga M, Duraiswamy VR, et al. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase[J] . Biotechnology for Biofuels, 2013, 6(1):181. [11] Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae[J] . Microbiology and Molecular Biology Reviews, 2008, 72(3):379-412. [12] Novy V, Krahulec S, Wegleiter M, et al. Process intensification through microbial strain evolution:mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae[J] . Biotechnology for Biofuels, 2014, 7(1):49. [13] Casey E, Sedlak M, Ho NWY, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J] . FEMS Yeast Research, 2010, 10(4):385-393. [14] Sànchezi Nogué V, Narayanan V, Gorwa-Grauslund MF. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH[J] . Applied Microbiology and Biotechnology, 2013, 97(16):7517-7525. [15] Peng LU, Chen L, Li G, et al. Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri[J] . Journal of Environmental Sciences, 2007, 19(12):1528-1532. [16] Oliva JM, Negro MJ, Saez F, et al. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus[J] . Process Biochemistry, 2006, 41(5):1223-1228. [17] Ballesteros M, Oliva JM, Negro MJ, et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process(SFS)with Kluyveromyces marxianus CECT10875[J] . Process Biochemistry, 2004, 39(12):1843-1848. [18] Li YC, Mitsumasu K, Gou ZX, et al. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37[J] . Applied Microbiology and Biotechnology, 2016, 100(3):1531-1542. [19] Zeng WY, Tang YQ, Gou M, et al. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources[J] . AMB Express, 2016, 6(1):51. [20] Zeng WY, Tang YQ, Gou M, et al. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability[J] . Applied Microbiology and Biotechnology, 2017, 101:1753-1767. [21] Landaeta R, Aroca G, Acevedo F, et al. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation[J] . Applied Energy, 2013, 102:124-130. [22] Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass[J] . Biotechnology for Biofuels, 2012, 5(1):32. [23] 苟梓希, 李云成, 谢采芸, 等. 工业酿酒酵母菌株 KF-7 对发酵抑制物的耐受性[J] . 应用与环境生物学报, 2015, 21(2):248-255. [24] Tang YQ, Koike Y, Liu K, et al. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7[J] . Biomass and Bioenergy, 2008, 32(11):1037-1045. [25] 郭雪娇, 查健, 姚坤, 等. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J] . 中国生物工程杂志, 2016, 26(5):97-105. [26] Sanda T, Hasunuma T, Matsuda F, et al. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids[J] . Bioresource Technology, 2011, 102(17):7917-7924. [27] Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli[J] . Biotechnology and Bioengineering, 1999, 65(1):24-33. [28] 林贝, 赵心清, 葛旭萌, 等. 玉米秸秆酸解副产物对重组酿酒酵母 6508-127 发酵的影响[J] . 中国生物工程杂志, 2007, 27(7):61-67. [29] Endo A, Nakamura T, Ando A, et al. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae[J] . Biotechnology for Biofuels, 2008, 1(1):3. [30] Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J] . Biotechnology for Biofuels, 2015, 8(1):153. |