生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 219-227.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1358
赵林艳1(), 徐武美1, 王豪吉1, 王昆艳2, 魏富刚3, 杨绍周3, 官会林1()
收稿日期:
2022-11-04
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
官会林,男,教授,研究方向:土壤生态学;E-mail: ghl0871@aliyun.com作者简介:
赵林艳,女,博士研究生,研究方向:土壤微生物学;E-mail: zhaolinyan1166@163.com
基金资助:
ZHAO Lin-yan1(), XU Wu-mei1, WANG Hao-ji1, WANG Kun-yan2, WEI Fu-gang3, YANG Shao-zhou3, GUAN Hui-lin1()
Received:
2022-11-04
Published:
2023-07-26
Online:
2023-08-17
摘要:
真菌群落组成与多样性是反映土壤健康的重要指标。为探究生物炭对三七连作土壤真菌群落的影响,本研究以10年三七连作土壤为研究对象,生物炭施加量为0、12与15 t/ha(T0、T1与T2),在三七移栽18个月后,利用高通量测序技术和实时荧光定量PCR技术,分析了不同处理下三七根际土壤真菌群落多样性和病原尖孢镰刀菌丰度,探索了土壤理化因子与真菌群落变化的关联性,以及生物炭对连作三七存活率的影响。结果表明,T2处理下三七根际土壤pH、NO3--N和有效钾含量分别提高了6.5%、13.6%和40.3%,NH4+-N含量降低了21.2%,真菌α多样性显著升高(P<0.05),且与对照相比较,群落呈明显分化格局。在门分类水平上,T2处理下被孢霉门(Mortierellomycota)相对丰度显著增加;在属分类水平上,被孢霉属(Mortierella)相对丰度显著增加,而镰刀菌属(Fusarium)相对丰度显著降低。荧光定量PCR分析表明,施用生物炭显著降低了土壤中尖孢镰刀菌(Fusarium oxysporum)丰度(P<0.05);此外,与对照组相比较,T2处理下三七存活率提高了24.0%,且其与土壤pH、真菌α多样性和被孢霉属相对丰度呈显著正相关,与NH4+-N含量和尖孢镰刀菌丰度呈显著负相关(P<0.05)。因此,施用生物炭通过改良三七连作土壤理化性质,增加有益真菌丰度,降低病原尖孢镰刀菌丰度,调节真菌群落结构,显著提高了三七存活率,是消减三七连作障碍的有效措施。
赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227.
ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping[J]. Biotechnology Bulletin, 2023, 39(7): 219-227.
土壤因子 | T0 | T1 | T2 |
---|---|---|---|
pH | 6.44±0.02b | 6.75±0.06a | 6.86±0.03a |
EC/(μS·cm-1) | 123.00±15.90a | 144.25±14.34a | 120.50±16.06a |
NH4+-N/(mg·kg-1) | 6.73±0.39a | 5.84±0.28ab | 5.30±0.21b |
NO3--N/(mg·kg-1) | 11.31±0.93b | 15.93±0.33a | 12.85±0.43ab |
AP/(mg·kg-1) | 25.31±7.54a | 31.88±1.81a | 23.30±1.61a |
AK/(mg·kg-1) | 177.37±12.07b | 261.44±13a | 250.56±10.7a |
OM/(g·kg-1) | 12.98±1.06ab | 13.91±0.39ab | 11.80±0.44b |
表1 施用生物炭对三七连作土壤理化性质的影响
Table 1 Effects of biochar application on the soil physicochemical properties under continuous cropping of P. notoginseng
土壤因子 | T0 | T1 | T2 |
---|---|---|---|
pH | 6.44±0.02b | 6.75±0.06a | 6.86±0.03a |
EC/(μS·cm-1) | 123.00±15.90a | 144.25±14.34a | 120.50±16.06a |
NH4+-N/(mg·kg-1) | 6.73±0.39a | 5.84±0.28ab | 5.30±0.21b |
NO3--N/(mg·kg-1) | 11.31±0.93b | 15.93±0.33a | 12.85±0.43ab |
AP/(mg·kg-1) | 25.31±7.54a | 31.88±1.81a | 23.30±1.61a |
AK/(mg·kg-1) | 177.37±12.07b | 261.44±13a | 250.56±10.7a |
OM/(g·kg-1) | 12.98±1.06ab | 13.91±0.39ab | 11.80±0.44b |
图1 不同生物炭施加量处理下三七根际土壤真菌OTU丰富度 A:共有和特有的OTU数量;B:经稀疏标准化的OTU丰富度。不同字母标记表示具有显著差异,下同
Fig. 1 Fungal OTU richness in the rhizosphere soil of P. notoginseng under the treatments with different biochar application amounts A: The numbers of shared and unique OTUs; B: rarefied OTU richness. Different letters marked indicate significant difference, the same below
图2 不同生物炭施加量处理下三七根际土壤真菌α多样性指数及其与土壤pH的关联性
Fig. 2 α-diversity index of soil fungi in the rhizosphere of P. notoginseng and its correlation with soil pH under the treatments with different biochar application amounts
图3 不同生物炭施加量处理下三七根际土壤真菌门分类水平的相对丰度
Fig. 3 Relative abundance of soil fungi at the phylum level in the rhizosphere of P. notoginseng under the treatments with different biochar application amounts
图4 不同生物炭施加量处理下被孢霉属与镰刀菌属相对丰度及尖孢镰刀菌丰度 A:被孢霉属相对丰度;B:镰刀菌属相对丰度;C:尖孢镰刀菌丰度
Fig. 4 Relative abundances of Mortierella and Fusarium, and the abundances of F. oxysporum under the trea-tments with different biochar application amounts A: Relative abundance of Mortierella. B: Relative abundance of Fusarium. C: F. oxysporum abundance
图5 土壤理化因子与被孢霉属、镰刀菌属相对丰度及尖孢镰刀菌丰度之间的关联性 PC1是基于ACE、Chao 1和PD多样性指数进行主成分分析的第一个主成分,解释了总方差的95.2%,用于反映真菌群落α多样性,下同
Fig. 5 Correlations between soil physicochemical properties and the relative abundances of Mortierella and Fusarium, and the abundances of F. oxysporum PC1 is the first component based on the principal component analysis of the ACE, Chao 1 and PD index, which explained 95.2% of the total variance and used as a measure to show the α diversity of the fungal community, the same below
图8 土壤理化性质、真菌α多样性、被孢霉属相对丰度、尖孢镰刀菌丰度与三七存活率的关联性
Fig. 8 Correlations between soil physicochemical properties, fungal α diversity, relative abundance of Mortierella, F. oxysporum abundance, and the survival rate of P. notoginseng
[1] |
Liao PR, Liu PF, Wang YL, et al. Stereoscopic cultivation of Panax notoginseng: a new approach to overcome the continuous cropping obstacle[J]. Ind Crops Prod, 2018, 126: 38-47.
doi: 10.1016/j.indcrop.2018.09.042 URL |
[2] |
Li H, Deng CQ, Chen BY, et al. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion[J]. J Ethnopharmacol, 2009, 121(3): 412-418.
doi: 10.1016/j.jep.2008.10.042 URL |
[3] | 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893. |
Sun XT, Li L, Long GQ, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chin J Ecol, 2015, 34(3): 885-893. | |
[4] | 张子龙, 李凯明, 杨建忠, 等. 轮作对三七连作障碍的消减效应研究[J]. 西南大学学报: 自然科学版, 2015, 37(8): 39-46. |
Zhang ZL, Li KM, Yang JZ, et al. Effects of crop rotation for reducing continuous cropping obstacles in Panax notoginseng cultivation[J]. J Southwest Univ Nat Sci Ed, 2015, 37(8): 39-46. | |
[5] |
Ahmad M, Rajapaksha AU, Lim JE, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33.
doi: 10.1016/j.chemosphere.2013.10.071 pmid: 24289982 |
[6] | Semida WM, Beheiry HR, Sétamou M, et al. Biochar implications for sustainable agriculture and environment: a review[J]. S Afr N J Bot, 2019, 127: 333-347. |
[7] |
Yu HW, Zou WX, Chen JJ, et al. Biochar amendment improves crop production in problem soils: a review[J]. J Environ Manage, 2019, 232: 8-21.
doi: S0301-4797(18)31259-3 pmid: 30466010 |
[8] |
Palansooriya KN, Wong JTF, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1(1): 3-22.
doi: 10.1007/s42773-019-00009-2 |
[9] |
Pathy A, Ray J, Paramasivan B. Biochar amendments and its impact on soil biota for sustainable agriculture[J]. Biochar, 2020, 2(3): 287-305.
doi: 10.1007/s42773-020-00063-1 |
[10] |
周丽靖, 王亚军, 谢忠奎, 等. 生物炭对兰州百合(Lilium davidii var. unicolor)连作土壤的改良作用[J]. 中国沙漠, 2019, 39(2): 134-143.
doi: 10.7522/j.issn.1000-694X.2018.00109 |
Zhou LJ, Wang YJ, Xie ZK, et al. Improvement effect of biochar on the degraded soil of Lanzhou lily field[J]. J Desert Res, 2019, 39(2): 134-143.
doi: 10.7522/j.issn.1000-694X.2018.00109 |
|
[11] | 杨莉, 文子伟, 付婧, 等. 生物质炭对连作参地人参种苗与土壤质量的影响[J]. 中药材, 2020, 43(4): 791-796. |
Yang L, Wen ZW, Fu J, et al. Effect of biochar on seedling and soil quality of continuous cropping Panax ginseng[J]. J Chin Med Mater, 2020, 43(4): 791-796. | |
[12] |
杨莉, 勾颖, 文子伟, 等. 生物质炭对连作参地土壤肥力及微生物特性的影响[J]. 核农学报, 2022, 36(6): 1244-1253.
doi: 10.11869/j.issn.100-8551.2022.06.1244 |
Yang L, Gou Y, Wen ZW, et al. Effect of biochar on soil fertility and microbial properties in continuous cropping ginseng field[J]. J Nucl Agric Sci, 2022, 36(6): 1244-1253.
doi: 10.11869/j.issn.100-8551.2022.06.1244 |
|
[13] |
Wu H, Qin X, Wu H, et al. Biochar mediates microbial communities and their metabolic characteristics under continuous monoculture[J]. Chemosphere, 2020, 246: 125835.
doi: 10.1016/j.chemosphere.2020.125835 URL |
[14] |
Zhao LY, Guan HL, Wang R, et al. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata[J]. J Soil Sci Plant Nutr, 2021, 21(2): 1318-1328.
doi: 10.1007/s42729-021-00442-y |
[15] |
Newsham KK, Hopkins DW, Carvalhais LC, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic[J]. Nat Clim Change, 2016, 6(2): 182-186.
doi: 10.1038/NCLIMATE2806 |
[16] | 唐彬彬, 董姚君, 贺密密, 等. 云南文山健康三七种植年限对根际微生物群落的影响[J]. 微生物学通报, 2020, 47(9): 2857-2866. |
Tang BB, Dong YJ, He MM, et al. Effects of different planting years of healthy Panax notoginseng on the rhizosphere microbial community in Wenshan of Yunnan Province[J]. Microbiol China, 2020, 47(9): 2857-2866. | |
[17] |
Miao CP, Mi QL, Qiao XG, et al. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens[J]. J Ginseng Res, 2016, 40(2): 127-134.
doi: 10.1016/j.jgr.2015.06.004 URL |
[18] |
Xu WM, Wu FY, Wang HJ, et al. Key soil parameters affecting the survival of Panax notoginseng under continuous cropping[J]. Sci Rep, 2021, 11(1): 5656.
doi: 10.1038/s41598-021-85171-z |
[19] |
Lievens B, Brouwer M, Vanachter ACRC, et al. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray[J]. Environ Microbiol, 2005, 7(11): 1698-1710.
doi: 10.1111/j.1462-2920.2005.00816.x pmid: 16232285 |
[20] |
Li SM, Barreto V, Li RW, et al. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. J Anal Appl Pyrolysis, 2018, 133: 136-146.
doi: 10.1016/j.jaap.2018.04.010 URL |
[21] |
Masud MM, Jiu YL, Ren KX. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol[J]. Pedosphere, 2014, 24(6): 791-798.
doi: 10.1016/S1002-0160(14)60066-7 URL |
[22] |
Gul S, Whalen JK, Thomas BW, et al. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agric Ecosyst Environ, 2015, 206: 46-59.
doi: 10.1016/j.agee.2015.03.015 URL |
[23] |
占亚楠, 王智, 孟亚利. 生物炭提高土壤磷素有效性的整合分析[J]. 应用生态学报, 2020, 31(4): 1185-1193.
doi: 10.13287/j.1001-9332.202004.024 |
Zhan YN, Wang Z, Meng YL. Biochar addition improves soil phosphorus availability: a meta-analysis[J]. Chin J Appl Ecol, 2020, 31(4): 1185-1193.
doi: 10.13287/j.1001-9332.202004.024 |
|
[24] | 刘玮晶, 刘烨, 高晓荔, 等. 外源生物质炭对土壤中铵态氮素滞留效应的影响[J]. 农业环境科学学报, 2012, 31(5): 962-968. |
Liu WJ, Liu Y, Gao XL, et al. Effects of biomass charcoals on retention of ammonium nitrogen in soils[J]. J Agro Environ Sci, 2012, 31(5): 962-968. | |
[25] | 王翰琨, 吴永波, 刘俊萍, 等. 生物炭对土壤氮循环及其功能微生物的影响研究进展[J]. 生态与农村环境学报, 2022, 38(6): 689-701. |
Wang HK, Wu YB, Liu JP, et al. A review of research advances in the effects of biochar on soil nitrogen cycling and its functional microorganisms[J]. J Ecol Rural Environ, 2022, 38(6): 689-701. | |
[26] |
Meng L, Sun T, Li M, et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress[J]. Ecotoxicol Environ Saf, 2019, 171: 75-83.
doi: 10.1016/j.ecoenv.2018.12.065 URL |
[27] |
Tarin MWK, Fan LL, Xie DJ, et al. Response of soil fungal diversity and community composition to varying levels of bamboo biochar in red soils[J]. Microorganisms, 2021, 9(7): 1385.
doi: 10.3390/microorganisms9071385 URL |
[28] |
Li X, Wang T, Chang SX, et al. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis[J]. Sci Total Environ, 2020, 749: 141593.
doi: 10.1016/j.scitotenv.2020.141593 URL |
[29] |
Dai ZM, Xiong XQ, Zhu H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3(3): 239-254.
doi: 10.1007/s42773-021-00099-x |
[30] |
Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota — A review[J]. Soil Biol Biochem, 2011, 43(9): 1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 URL |
[31] |
Yao Q, Liu J, Yu Z, et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biol Biochem, 2017, 110: 56-67.
doi: 10.1016/j.soilbio.2017.03.005 URL |
[32] |
Arafat Y, Tayyab M, Khan MU, et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards[J]. Agronomy, 2019, 9(8): 466.
doi: 10.3390/agronomy9080466 URL |
[33] |
Shen Z, Ryan Penton C, Lv N, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb Ecol, 2018, 75(3): 739-750.
doi: 10.1007/s00248-017-1052-5 URL |
[34] |
Wang C, Chen D, Shen J, et al. Biochar alters soil microbial communities and potential functions 3-4 years after amendment in a double rice cropping system[J]. Agric Ecosyst Environ, 2021, 311: 107291.
doi: 10.1016/j.agee.2020.107291 URL |
[35] | 王科, 刘芳, 蔡磊. 中国农业植物病原菌物常见种属名录[J]. 菌物学报, 2022, 41(3): 361-386. |
Wang K, Liu F, Cai L. A Name list of common agricultural phytopathogenic fungi in China[J]. Mycosystema, 2022, 41(3): 361-386. | |
[36] | Shen RQ, Zhang P, Guo CJ, et al. Study on fungi belonging to Fusarium link in Ningxia Hui autonomous region[J]. Plant Dis Pests, 2012, 3(2): 6-8. |
[37] |
Zheng YK, Miao CP, Chen HH, et al. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease[J]. J Ginseng Res, 2017, 41(3): 353-360.
doi: 10.1016/j.jgr.2016.07.005 URL |
[38] |
Ren T, Gao W, Xu C, et al. Novel approaches of regulating soil micro-ecological environment based on modified biochar in plastic greenhouse[J]. Environ Technol Innov, 2021, 23: 101740.
doi: 10.1016/j.eti.2021.101740 URL |
[39] |
Li T, Choi K, Jung B, et al. Biochar inhibits ginseng root rot pathogens and increases soil microbiome diversity[J]. Appl Soil Ecol, 2022, 169: 104229.
doi: 10.1016/j.apsoil.2021.104229 URL |
[40] | Liu C, Xia R, Tang M, et al. Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China[J]. Hortic Res, 2022, 9: uhac108. |
[41] |
Ou XH, Cui XM, Zhu DW, et al. Cultivation mode of Panax notoginseng causes NH4+ accumulation in planting soil[J]. Arch Agron Soil Sci, 2021, 67(7): 960-973.
doi: 10.1080/03650340.2020.1771314 URL |
[42] | Graber ER and Elad Y. Biochar impact on plant resistance to disease[M]// Biochar and Soil Biota. Boca Raton: CRC Press, 2013: 49-76. |
[43] |
Jeffery S, Verheijen FGA, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agric Ecosyst Environ, 2011, 144(1): 175-187.
doi: 10.1016/j.agee.2011.08.015 URL |
[44] |
Jeffery S, Abalos D, Prodana M, et al. Biochar boosts tropical but not temperate crop yields[J]. Environ Res Lett, 2017, 12(5): 053001.
doi: 10.1088/1748-9326/aa67bd URL |
[45] |
Liu L, Huang X, Zhang J, et al. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities[J]. Soil Biol Biochem, 2020, 148: 107909.
doi: 10.1016/j.soilbio.2020.107909 URL |
[46] |
Tian GL, Bi YM, Jiao XL, et al. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng[J]. Appl Microbiol Biotechnol, 2021, 105(18): 6977-6991.
doi: 10.1007/s00253-021-11464-y |
[1] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[2] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[3] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[4] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[5] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[6] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[7] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[8] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[9] | 杨延, 于龙凤, 王绍梅, 李卫娜, 葛锋. 三七细胞中共超表达FPS、SS对皂苷合成的影响[J]. 生物技术通报, 2022, 38(3): 50-58. |
[10] | 刘天海, 羊淑琴, 刘付彭, 苗人云, 余洋, 吴翔, 唐杰, 王勇, 彭卫红, 谭昊. 麦秸鸡粪发酵有机肥对六妹羊肚菌连作的影响[J]. 生物技术通报, 2022, 38(12): 263-273. |
[11] | 袁源, 黄海辰, 李琳, 刘国辉, 傅俊生, 吴小平. 石灰对灵芝覆土连作障碍的防控作用及其微生物群落分析[J]. 生物技术通报, 2021, 37(4): 70-84. |
[12] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
[13] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
[14] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
[15] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||