生物技术通报 ›› 2019, Vol. 35 ›› Issue (6): 138-146.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0814
张江江, 常丽, 赵立宁, 李德芳
收稿日期:
2018-09-19
出版日期:
2019-06-26
发布日期:
2019-07-08
作者简介:
张江江,男,博士研究生,研究方向:大麻作物遗传育种;E-mail:82101179212@caas.cn
基金资助:
ZHANG Jiang-jiang, CHANG Li, ZHAO Li-ning, LI De-fang
Received:
2018-09-19
Published:
2019-06-26
Online:
2019-07-08
摘要: 花粉壁是花粉重要的组成元件,在花粉发育和受精等过程中起作用。雄性不育研究中已发现许多与花粉壁相关的发育过程。绒毡层的降解、胼胝质的凋亡、初生外壁形成和降解以及花粉内壁发育等都与雄性不育间存在某种关联。本文主要根据雄性不育的有关报道,对涉及花粉壁发育的相关内容进行归纳。旨在找出花粉壁发育的一般规律,为雄性不育中花粉壁的功能研究及机理解析提供理论支撑。
张江江, 常丽, 赵立宁, 李德芳. 雄性不育中花粉壁的研究进展[J]. 生物技术通报, 2019, 35(6): 138-146.
ZHANG Jiang-jiang, CHANG Li, ZHAO Li-ning, LI De-fang. Research Advance on Pollen-wall Development in Male Sterility[J]. Biotechnology Bulletin, 2019, 35(6): 138-146.
[1] 杨莉芳, 刁现民. 植物细胞核雄性不育基因研究进展[J]. 植物遗传资源学报, 2013(6):1108-1117. [2] Zhou Q, Zhu J, Cui YL, et al.Ultrastructure analysis reveals sporop-ollenin deposition and nexine formation at early stage of pollen wall development in Arabidopsis[J]. Science Bulletin, 2015, 60(2):273-276. [3] Jiang J, Zhang Z, Cao J.Pollen wall development:The associated enzymes and metabolic pathways[J]. Plant Biology, 2013, 15(2):249-263. [4] Shi J, Cui M, Yang L, et al.Genetic and biochemical mechanisms of pollen wall development[J]. Trends in Plant Science, 2015, 20 (11):741-753. [5] Hu J, Wang Z, Zhang L, et al.The Arabidopsis exine formation defect(efd)gene is required for primexine patterning and is critical for pollen fertility[J]. New Phytology, 2014, 203(1):140-154. [6] 赵艳云. 拟南芥efd基因影响花粉壁模式形成的机理研究[D]. 上海:上海师范大学, 2017. [7] Hu J, Huang W, Huang Q, et al.Mitochondria and cytoplasmic male sterility in plants[J]. Mitochondrion, 2014, 19:282-288. [8] Yang J, Tian L, Sun MX, et al.Auxin response factor17 is essential for pollen wall pattern formation in Arabidopsis[J]. Plant Physiology, 2013, 162(2):720-731. [9] Chang HS, Zhang C, Chang YH, et al.No Primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis[J]. Plant Physiology, 2012, 158(1):264-272. [10] 王建林. 拟南芥雄性不育基因nef1的初步功能研究[D]. 上海:上海师范大学, 2013. [11] Li WL, Liu Y, Douglas CJ.Role of glycosyltransferases in pollen wall primexine formation and exine patterning[J]. Plant Physiology, 2017, 173(1):167-182. [12] Sun MX, Huang XY, Yang J, et al.Arabidopsis Rpg1 Is Important for Primexine Deposition and Functions Redundantly with Rpg2 for plant fertility at the late reproductive stage[J]. Plant Reprod, 2013, 26(2):83-91. [13] 马丽娟. 膜定位蛋白dex1是拟南芥小孢子发育所必需的[D]. 上海:上海师范大学, 2013. [14] Scott RJ, Spielman M, Dickinson HG.Stamen structure and function[J]. The Plant Cell, 2004, 16(Suppl):S46. [15] Moon S, Kim SR, Zhao G, et al.Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation[J]. Plant Physiology, 2013, 161(2):663-675. [16] Persson S, Paredez A, Carroll A, et al.Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39):15566-15571. [17] Schnurr JA, Storey KK, Jung HJ, et al.Udp-sugar pyrophosphorylase is essential for pollen development in Arabidopsis[J]. Planta, 2006, 224(3):520-532. [18] Kotake T, Hojo S, Yamaguchi D, et al.Properties and physiological functions of Udp-sugar pyrophosphorylase in Arabidopsis[J]. Journal of the Agricultural Chemical Society of Japan, 2007, 71(3):761-771. [19] Li ZJ, Zhang PP, Lv JY, et al.Global dynamic transcriptome programming of rapeseed(Brassica Napus L.)anther at different development stages[J]. PLoS One, 2016, 11(5):e0154039. [20] Yang K, Zhou X, Wang Y, et al.Carbohydrate metabolism and gene regulation during anther development in an androdioecious tree, tapiscia sinensis[J]. Ann Bot, 2017, 120(6):967-977. [21] Li J, Yu M, Geng LL, et al.The fasciclin-like arabinogalactan protein gene, Fla3, is involved in microspore development of Arabidopsis[J]. The Plant Journal, 2010, 64(3):482-497. [22] Sumiyoshi M, Inamura T, Nakamura A, et al.Udp-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice(Oryza sativa)[J]. Plant & Cell Physiology, 2015, 56(2):232-241. [23] Yim S, Khare D, Kang J, et al.Postmeiotic development of pollen surface layers requires two Arabidopsis abcg-type transporters[J]. Plant Cell Report, 2016, 35(9):1863-1873. [24] Xu XF, Wang B, Lou Y, et al.Magnesium transporter 5 plays an important role in Mg transport for male gametophyte development in Arabidopsis[J]. The Plant Journal, 2015, 84(5):925-936. [25] Ueda K, Yoshimura F, Miyao A, et al.Collapsed abnormal pollen1 gene encoding the arabinokinase-like protein is involved in pollen development in rice[J]. Plant Physiology, 2013, 162(2):858-871. [26] Dong J, Gao K, Wang K, et al.Cell wall disruption of rape bee pollen treated with combination of protamex hydrolysis and ultrasonication[J]. Food Res Int, 2015, 75:123-130. [27] Yi J, Moon S, Lee YS, et al.Defective Tapetum Cell Death 1(Dtc1)regulates ros levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2016, 170(3):1611-1623. [28] Papini A, Mosti S, Brighigna L.Programmed-cell-death events during tapetum development of angiosperms[J]. Protoplasma, 1999, 207(3/4):213-221. [29] Li H, Yuan Z, Vizcaybarrena G, et al.Persistent tapetal cell1 encodes a phd-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiology, 2011, 156(2):615-630. [30] Li N, Zhang DS, Liu HS, et al.The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. The Plant Cell, 2006, 18(11):2999-3014. [31] Zhao DZ, Wang GF, Speal B, et al.The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes & Development, 2002, 16(15):2021-2031. [32] Canales C, Bhatt AM, Scott R, et al.A putative lrr receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis[J]. Current Biology, 2002, 12(20):1718-1727. [33] Huang J, Li Z, Biener G, et al.Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase ems1[J]. The Plant Cell, 2017, 29(6):1335-1356. [34] Huang J, Zhang T, Linstroth L, et al.Control of anther cell differentiation by the small protein ligand Tpd1 and its receptor Ems1 in Arabidopsis[J]. PLoS Genetics, 2016, 12(8):e1006147. [35] Shi X, Han X, Lu TG.Callose Synthesis During Reproductive Development in Monocotyledonous and Dicotyledonous Plants[J]. Plant Signal and Behavor, 2016, 11(2):e1062196. [36] Dong X, Hong Z, Sivaramakrishnan M, et al.Callose synthase(Cals5)is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis[J]. The Plant Journal, 2005, 42(3):315-328. [37] Enns LC, Kanaoka MM, Torii KU, et al.Two callose synthases, Gsl1 and Gsl5, play an essential and redundant role in plant and pollen development and in fertility[J]. Plant Mol Biol, 2005, 58(3):333-349. [38] Nishikawa S, Zinkl GM, Swanson RJ, et al.Callose(Β-1, 3 Glucan)is essential for Arabidopsis pollen wall patterning, but not tube growth[J]. BMC Plant Biology, 2005, 5(1):1-9. [39] Xie B, Wang X, Hong Z.Precocious Pollen Germination in Arabidopsis Plants with Altered Callose Deposition During Microsporogenesis[J]. Planta, 2010, 231(4):809-823. [40] Jacobs AK, Lipka V, Burton RA, et al.An Arabidopsis callose synthase, Gsl5, is required for wound and papillary callose formation[J]. The Plant Cell, 2003, 15(11):2503-2513. [41] Huang L, Chen XY, Rim Y, et al.Arabidopsis Glucan Synthase-Like 10 functions in male gametogenesis[J]. Journal of Plant Physiology, 2009, 166(4):344-352. [42] 崔海芳, 张凡, 尹俊龙, 等. 胼胝质沉积与花粉发育[J]. 云南农业大学学报:自然科学版, 2017, 32(3):551-557. [43] Huang XY, Niu J, Sun MX, et al.Cyclin-dependent kinase G1 is associated with the spliceosome to regulate callose synthase5 splicing and pollen wall formation in Arabidopsis[J]. The Plant Cell, 2013, 25(2):637-648. [44] Zhou Z, Dun X, Xia S, et al.Bnms3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus[J]. J Exp Bot, 2012, 63(5):2041-2058. [45] 王增增. 油菜嵌合基因bnaa7. Hsp70-1-Like在拟南芥中的遗传转化及后代鉴定[D]. 武汉:华中农业大学, 2015. [46] 戚楠楠, 张晓燕, 苏娜娜, 等. 甘蓝型油菜温敏细胞核雄性不育系te5a花药发育的细胞学研究[J]. 中国农业科学, 2016, 49(12):2408-2417. [47] Worrall D, Hird DL, Hodge R, et al.Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J]. The Plant Cell, 1992, 4(7):759-771. [48] Tsuchiya T, Toriyama K, Yoshikawa M, et al.Tapetum-specific expression of the gene for an endo-beta-1, 3-glucanase causes male sterility in transgenic tobacco[J]. Plant & Cell Physiology, 1995, 36(3):487-494. [49] Ding Y, Ma Y, Liu N, et al.Micrornas involved in auxin signalling modulate male sterility under high-temperature stress in cotton(Gossypium hirsutum)[J]. The Plant Journal, 2017, 91(6):977-994. [50] Ji J, Huang W, Yin C, et al.Mitochondrial cytochrome c oxidase and F1fo-atpase dysfunction in peppers(Capsicum annuuml)with cytoplasmic male sterility and its association Withorf507andψatp6-2genes[J]. International Journal of Molecular Sciences, 2013, 14 (1):1050-1068. [51] Hsiao AS, Yeung EC, Ye ZW, et al.The Arabidopsis cytosolic acyl-coa-binding proteins play combinatory roles in pollen development[J]. Plant and Cell Physiology, 2015, 56(2):322-333. [52] Azevedo SC, Kim SS, Koch S, et al.A novel fatty Acyl-Coa synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis[J]. The Plant Cell Online, 2009, 21(2):507-525. [53] Morant M, Jørgensen K, Schaller H, et al.Cyp703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J]. The Plant Cell, 2007, 19(5):1473-1487. [54] Xie Hh, Chen L, Xu F, et al.Acos5 is required for primexine formation and exine pattern formation during microsporogenesis in Arabidopsis[J]. Journal of Plant Biology, 2017, 60(4):404-412. [55] 方子君, 石其龙, 杨仲南, 等. 水稻osms2基因在花药发育中的功能分析[J]. 植物学报, 2008, 25(6):665-672. [56] Wang K, Guo ZL, Zhou WT, et al.The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation[J]. Plant Physiology, 2018, 78:283-294. [57] Quilichini TD, Grienenberger E, Douglas CJ.The biosynthesis, composition and assembly of the outer pollen wall:A tough case to crack[J]. Phytochemistry, 2015, 113(2):170-182. [58] Yang ZN.Regulation of sporopollenin synthesis for pollen wall formation in plant[J]. Science China Life Sciences, 2016, 59(12):1-3. [59] Ariizumi T, Toriyama K.Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annu Rev Plant Biol, 2011, 62:437-460. |
[1] | 赵国龙, 林春晶, 金东淳, 张春宝. 主要农作物细胞质雄性不育系育性恢复基因研究进展[J]. 生物技术通报, 2020, 36(1): 116-125. |
[2] | 王平, 丛玲, 王春语, 朱振兴, AAshokKumar, 张丽霞, 陆晓春. 高粱A1型细胞质雄性不育系与保持系线粒体基因组分析比较[J]. 生物技术通报, 2019, 35(5): 42-47. |
[3] | 王姣, 张水, 张婧柔, 邵贵芳, 邓明华. 辣椒胞质雄性不育系CaCOX3的克隆与表达分析[J]. 生物技术通报, 2019, 35(4): 1-6. |
[4] | 杨妍妍, 霍雨猛, 吴雄, 刘冰江. 洋葱雄性不育分子标记在单倍体鉴定中的应用[J]. 生物技术通报, 2019, 35(12): 169-174. |
[5] | 张婧柔, 邵贵芳, 王姣, 张水, 杨婷玉, 邓明华. 辣椒胞质雄性不育系线粒体基因CaATP9的克隆与表达[J]. 生物技术通报, 2019, 35(11): 9-15. |
[6] | 戴冬洋, 袁丽伟, 盛云燕, 郑群. 甜瓜雄性不育系不同发育时期雄蕊转录组分析[J]. 生物技术通报, 2018, 34(8): 93-100. |
[7] | 邵贵芳, 张凡, 王姣, 赵凯, 莫云容, 邓明华. 辣椒雄性不育的研究进展[J]. 生物技术通报, 2017, 33(8): 7-13. |
[8] | 魏兵强,张淼,王兰兰,陈灵芝,张茹,侯栋,张建农. 辣椒胞质雄性不育及其育性恢复研究进展[J]. 生物技术通报, 2016, 32(4): 1-5. |
[9] | 杨鹏. 细胞质雄性不育系转录组学研究进展[J]. 生物技术通报, 2016, 32(12): 1-7. |
[10] | 钱景华, 周步进, 孔祥军, 李增强, 史奇奇, 廖小芳, 周瑞阳, 陈鹏. 红麻MYB21基因的克隆、表达及载体构建[J]. 生物技术通报, 2016, 32(11): 170-179. |
[11] | 廖珂, 柴志欣, 钟金城. 小分子非编码RNA与雄性不育[J]. 生物技术通报, 2016, 32(1): 33-40. |
[12] | 刘琪迩, 杜坤, 王幼平. 油菜细胞质雄性不育与育性恢复机理的研究进展[J]. 生物技术通报, 2015, 31(9): 15-22. |
[13] | 付永;魏雅萍;吴克选;陈生梅;张立成;王谢忠;孟茹;. Real-time PCR检测黄牛、牦牛、犏牛睾丸组织中Boule、Dazl基因mRNA表达[J]. , 2012, 0(10): 150-155. |
[14] | 陈鹏;周瑞阳;赵杨;蒋利和;. 红麻不育系和保持系中cob基因的克隆与分析[J]. , 2011, 0(02): 93-97. |
[15] | 胡立敏;陶兴林;侯栋;朱惠霞;张东琴;. 花椰菜温敏型雄性不育系的RAPD标记[J]. , 2010, 0(12): 118-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||