[1] Streeter JG.Inhibition of legume nodule formation and N2 fixation by nitrate[J]. Critical Reviews in Plant Sciences, 1988, 7:1-23.
[2] Yamashita N, Tanabata S, Ohtake N, et al.Effects of different chemical forms of nitrogen on the quick and reversible inhibition of soybean nodule growth and nitrogen fixation activity[J]. Front Plant Sci, 2019, 10:131.
[3] Oldroyd GE, Downie JA.Calcium, kinases and nodulation signalling in legumes[J]. Nature Reviews Molecular Cell Biology, 2004, 5:566-576.
[4] Chung LC, Blank MA, Fay AW, et al.Stepwise formation of P-cluster in nitrogenase MoFe protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:18474-18478.
[5] Miller AF, Orme-Johnson WH.Biosynthesis of the iron-molybdenum cofactor of nitrogenase[J]. Journal of Biological Chemistry, 2013, 14:225-249.
[6] Suzaki T, Yoro E, Kawaguchi M.Leguminous plants:inventors of root nodules to accommodate symbiotic bacteria[J]. International Review of Cell and Molecular Biology, 2015, 316:111-158.
[7] Oka-Kira E, Kawaguchi M.Long-distance signaling to control root nodule number[J]. Current Opinion in Plant Biology, 2006, 9:496-502.
[8] Reid DE, Ferguson BJ, Gresshoff PM. Inoculation-and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation[J]. Mol Plant Microbe Interact, 2011(5), 24:606-618.
[9] Magori S, Oka-Kira E, Shibata S, et al.TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus[J]. Mol Plant Microbe Interact, 2009, 22(3):259-268.
[10] Carroll BJ, Mcneil DL, Gresshoff PM.Isolation and properties of soybean[Glycine max(L.)Merr. ]mutants that nodulate in the presence of high nitrate concentrations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82:4162-4166.
[11] Searle IR, Men AE, Laniya TS, et al.Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase[J]. Science, 2003, 299:109-112.
[12] Nishida H, Handa Y, Tanaka S, et al.Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus[J]. Journal of Plant Research, 2016, 129:909-919.
[13] Hastwell AH, Bang TC D, Gresshoff PM, et al.CLE peptide-encoding gene families in Medicago truncatula and Lotus japonicus, compared with those of soybean, common bean and Arabidopsis[J]. Scientific Reports, 2017, 7(1):9384.
[14] Erika OK, Kumiko T, Kin-Ichiro M, et al.klavier(klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction[J]. The Plant Journal, 2010, 44:505-515.
[15] Okamoto S, Ohnishi E, Sato S, et al.Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation[J]. Plant & Cell Physiology, 2009, 50:67-77.
[16] Okamoto S, Kawaguchi M.Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus[J]. Plant Signal Behav, 2015, 10(5):e1000138.
[17] Jeudy C, Ruffel S, Freixes S, et al.Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses[J]. New Phytologist, 2010, 185(3):817-828.
[18] Nishida H, Tanaka S, Handa Y, et al.A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1):499.
[19] Lin JS, Li X, Luo Z, et al.NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11):942-952.
[20] Guan P, Ripoll JJ, Wang R, et al.Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2419-2424.
[21] Nishida HST.Nitrate-mediated control of root nodule symbiosis[J]. Current Opinion in Plant Biology, 2018, 4:129-136.
[22] Christian J, Sandrine R, Sandra F, et al.Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses[J]. New Phytologist, 2010, 185(3):817-828.
[23] Satoru O, Masayoshi K.Shoot HAR1 mediates nitrate inhibition of nodulation in Lotus japonicus[J]. Plant Signal Behav, 2015, 10(5):e1000138.
[24] Soyano T, Shimoda Y, Hayashi M.NODULE INCEPTION antagonistically regulates gene expression with nitrate in Lotus japonicus[J]. Plant & Cell Physiology, 2015, 56(2):368-376.
[25] Caba JL, Ligero F.Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa[J]. Plant Cell & Environment, 2013, 21(1):87-93.
[26] Reid DE, Heckmann AB, Novã KO, et al.CYTOKININ OXIDASE/DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus[J]. Plant Physiology, 2016, 170:1060-1074.
[27] Fujikake H, Yashima H, Sato T, et al.Rapid and reversible nitrate inhibition of nodule growth and N2 fixation activity in soybean(Glycine max(L.)Merr. )[J]. Soil Science & Plant Nutrition, 2002, 48(2):211-217.
[28] Yamasaki H, Sakihama Y.Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase:in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Letters, 2000, 468(1):89-92.
[29] Maskall CS, Gibson JF, Dart PJ.Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations[J]. Biochemical Journal, 1977, 167:435-445.
[30] Vessey JK, Waterer J.In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules:Recent developments[J]. Physiologia Plantarum, 2010, 84(1):171-176.
[31] Meakin GE, Emilio B, Brian J, et al.The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules[J]. Microbiology, 2007, 153(2):411.
[32] Kato K, Kanahama K, Kanayama Y.Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules[J]. Journal of Plant Physiology, 2010, 167(3):238-241.
[33] Botrel A, Kaiser WM.Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status[J]. Planta, 1997, 201(4);496-501.
[34] Rigaud J, Puppo A.Effect of nitrite upon leghemoglobin and interaction with nitrogen fixation[J]. Biochimica et Biophysica Acta(BBA)- General Subjects, 1977, 497(3):702-706.
[35] Huber TA, Streeter JG.Purification and properties of asparagine synthetase from soybean root nodules[J]. Plant Science, 1985, 42(1):9-17.
[36] Sprent JI, Minchin FR, Parsons R.Evolution since Knoxville:were nitrogen-fixing organisms wise to inhabit land plants[J]. New Horizons in Nitrogen Fixation, 1992, 17:65-76.
[37] Small JGC, Leonard OA.Translocation of C14-labeled photosynthate in nodulated legumes as influenced by nitrate nitrogen[J]. American Journal of Botany, 1969, 56(2):187-194.
[38] Bacanamwo M, Harper JE.Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C:N ratio[J]. Physiologia Plantarum, 2010, 98(3):529-538.
[39] Serraj R, Vadez V, Denison RF, et al.Involvement of ureides in nitrogen fixation inhibition in soybean[J]. Plant Physiology, 1999, 119(1):289-296.
[40] Walsh KB, Vessey JK, Layzell DB.Carbohydrate supply and N2 fixation in soybean:The effect of varied daylength and stem girdling[J]. Plant Physiology, 1987, 85:137-144.
[41] Vessey JK., Waterer J. In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules:Recent developments[J]. Physiologia Plantarum, 2010, 84(1):171-176.
[42] 李奇真, 孙克用, 卢增辉, 等. 夏大豆施肥生理基础及高产栽培技术研究[J]. 中国农业科学, 1989, 4:41-48.
[43] 陈昌斌, 戴小密, 俞冠翘, 等. 组成型nifA 对大豆根瘤菌(Rhizobium fredii)HN01lux 结瘤固氮效率的促进作用[J]. 科学通报, 1999, 44(5):529-533.
[44] 刘玉库, 张瑞朋, 谈伟. 大豆氮素营养研究进展[J]. 杂粮作物, 2006(3):200-203.
[45] 田艳洪. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响[D]. 哈尔滨:东北农业大学, 2007.
[46] 夏玄. 氮素水平对大豆结瘤、氮素积累及产量的影响[D]. 哈尔滨:东北农业大学, 2014. |