生物技术通报 ›› 2019, Vol. 35 ›› Issue (7): 148-155.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
李晓院, 解莉楠
收稿日期:
2019-01-23
出版日期:
2019-07-26
发布日期:
2019-07-29
作者简介:
李晓院,女,硕士研究生,研究方向:发育生物学;E-mail:xiaoyuanli@nefu.edu.cn
基金资助:
LI Xiao-yuan, XIE Li-nan
Received:
2019-01-23
Published:
2019-07-26
Online:
2019-07-29
摘要: 盐胁迫是限制农作物生产的主要非生物因素之一。土壤中过量的可溶性盐(主要指Na+)可使植物受到渗透胁迫、离子胁迫和氧化胁迫等次生胁迫。在高盐环境下,植物通过Na+外排或胞内区隔化等策略来降低胞内Na+浓度,进而重建或维持植物体内的离子稳态平衡。主要综述了盐胁迫下植物细胞维持Na+离子动态平衡的主要途径和调控机制的最新进展。对盐胁迫下离子动态平衡过程的深入了解将有助于创制更高耐逆性的作物品种,实现农业的可持续发展。
李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报, 2019, 35(7): 148-155.
LI Xiao-yuan, XIE Li-nan. Research Progress in Na+ Regulation Mechanism of Plants Under Salt Stress[J]. Biotechnology Bulletin, 2019, 35(7): 148-155.
[1] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59:651-681. [2] 李建锐. 谷子SiASR4基因参与植物响应干旱和盐胁迫的功能研究[D]. 北京:中国农业大学, 2018. [3] 赵盼盼. 棉花GhACR1沉默株系的构建及其功能初步研究[D]. 新乡:河南师范大学, 2018. [4] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60. [5] Zhu JK.Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53:247-273. [6] Rao GG, Ramaiah JK, Rao GR.Salinity induced changes in the activities of aspartate & alanine amino transferases & glutamate dehydrogenase in peanut(Arachis hypogaea L.)leaves[J]. Indian Journal of Experimental Biology, 1981, 19(8):771. [7] Essah PA, Davenport R, Tester M.Sodium influx and accumulation in Arabidopsis[J]. Plant Physiology, 2003, 133:307-318. [8] Bose J, Rodrigomoreno A, Lai D, et al.Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa[J]. Annals of Botany, 2015, 115:481-494. [9] Thewes S.Calcineurin-Crz1 signaling in lower eukaryotes[J]. Eukaryot Cell, 2014, 13:694-705. [10] Yu Q, An L, Li W.The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Rep, 2014, 33:203-214. [11] Zhu JK.Plant salt tolerance[J]. TRENDS in Plant Science, 2001, 6(2):66-71. [12] Yue Y, Zhang M, Zhang J, et al.SOS1 gene overexpression increa-sed salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio[J]. Journal of Plant Physiology, 2012, 169(3):255-261. [13] Gaxiola RA, Li J, Undurraga S, et al.Drought and salt tolerant plants result from overexpression of the AVP1 H+-pump[J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98(20):11444-11449. [14] Zhang GH, Su Q, An LJ, et al.Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis[J]. Plant Physiology and Biochemistry, 2008, 46(2):117-126. [15] Yang Y, Guo Y.Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2):523-539. [16] Liu J, Zhu JK.A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945. [17] Ishitani M, Liu J, Halfter U, et al.SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell, 2000, 12(9):1667. [18] Quan R, Lin H, Mendoza I, et al.SCABP8/CBL10, a putative calc-ium sensor, interacts with the protein kinase SOS2 to protect Ara-bidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4):1415-1431. [19] Zhu JK.Abiotic Stress signaling and responses in plants[J]. China Rice, 2016, 167(2):313. [20] Lin H, Guo Y.Phosphorylation of SOS3 like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J]. The Plant Cell, 2009, 21(5):1607-1619. [21] Halfter U, Ishitani M, Zhu JK.The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proceedings of the National Academy of Sciences of the USA, 2000, 97(7):3735. [22] Shi HZ, Ishitani M, Cheolsoo K, et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the National Academy of Sciences of the USA, 2000, 97(12):6896. [23] Qiu QS, Guo Y, Dietrich MA, et al.Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the National Academy of Sciences of the USA, 2002, 99(12):8436. [24] Zhou H, Lin H, Chen S, et al.Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. The Plant Cell, 2014, 26:1166-1182. [25] Ohta M, Guo Y, Halfter U, et al.A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100:11771-11776. [26] Kim WY, Ali Z, Park HJ, et al.Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis[J]. Nature Communications, 2013, 4:273-275. [27] Tan T, Cai J, Zhan E, et al.Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis[J]. Plant Molecular Biology, 2016, 92:391-400. [28] Yang Y, Qin Y, Xie C, et al.The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. The Plant Cell, 2010, 22:1313-1332. [29] Fuglsang AT, Guo Y, Cuin TA, et al.Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. The Plant Cell, 2007, 19(5):1617-1634. [30] Quintero FJ, Martinez-Atienza J, Villalta I, et al.Activation of the plasma membrane Na+/H+ antiporter salt-overly-sensitive 1(SOS1)by phosphorylation of an auto-inhibitory C-terminal domain[J]. Proceedings of the National Academy of Sciences of the USA, 2011, 108(6):2611-2616. [31] Núñez-Ramírez R, Sánchez-Barrena MJ, Villalta I, et al.Structural insights on the plant salt-overly-sensitive 1(SOS1)Na+/H+ antiporter[J]. Journal of molecular biology, 2012, 424(5):283-294. [32] Feki K, Quintero FJ, Pardo JM, et al.Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation[J]. Plant molecular biology, 2011, 76(6):545-556. [33] Shi H, Quintero FJ, Pardo JM, et al.The putative plasma membrane NA/H antiporter SOS1 controls long-distance NA+ transport in plants[J]. The Plant Cell, 2002, 14(2):465-477. [34] Olías R, Eljakaoui Z, Li J, et al.The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs[J]. Plant, Cell & Environment, 2009, 32(7):904-916. [35] Shabala S.Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Ann Bot, 2013, 112(7):1209-1221. [36] Katschnig D, Bliek T, Rozema J, et al.Constitutive high-level SOS1, expression and absence of HKT1;1, expression in the salt-accumulating halophyte Salicornia dolichostachya[J]. Plant Science, 2015, 234:144-154. [37] Zhang WD, Wang P, Bao Z, et al.SOS1, HKT1;5, and NHX1 synergisti-cally modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora[J]. Frontiers in Plant Science, 2017, 8:576. [38] Benito B, Haro R, et al.The twins K + and Na + in plants[J]. Journal of Plant Physiology, 2014, 171(9):723-731. [39] Huang Y, Guan C, Liu Y, et al.Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing Vacuolar Na+(K+)/H+ antiporter gene(Pv NHX1)[J]. Frontiers in Plant Science, 2017, 8:458. [40] Hamamoto S, Horie T, Hauser F, et al.HKT transporters mediate salt stress resistance in plants:from structure and function to the field[J]. Current opinion in biotechnology, 2015, 32:113-120. [41] Garriga M, Raddatz N, Véry AA, et al.Cloning and functional characterization of HKT1 and AKT1 genes of fragaria spp. -relationship to plant response to salt stress[J]. Journal of Plant Physiology, 2016, 210:9-17. [42] Zhang M, Cao Y, Wang Z, et al.A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New Phytologist, 2018, 217(3):1161-1176. [43] Horie T, Yoshida K, Nakayama H, et al.Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. The Plant Journal, 2010, 27(2):129-138. [44] Pascal M, Hosoo Y, Goshima S, et al.Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the USA, 2002, 99(9):6428-6433. [45] Pascal M, Brendan E, Rama V, et al.Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1[J]. Febs Letters, 2002, 531(2):157-161. [46] Rus A, Yokoi S, Sharkhuu A, et al.At HKT1 is a salt tolerance determinant that controls Na+ entry into plant roots.[J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98:14150-14155. [47] Hazzouri KM, Basel K, et al.Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism[J]. Frontiers in Plant Science, 2018, 9:156. [48] Berthomieu P.Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9):2004-2014. [49] An D, Chen JG, Gao YQ, et al.AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. Plos Genetics, 2017, 13(10):e1007086. [50] Blumwald E.Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4):431-434. [51] Chanroj S, Wang GY, Venema K, et al.Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants[J]. Frontiers in Plant Science, 2012, 3:25. [52] Apse MP, Aharon GS, Snedden WA, et al.Salt tolerance conferred by over expression of a vacuolar Na CMC antiport in Arabidopsis[J]. Science, 1999, 285(12):1256-1258. [53] Fukuda A, Nakamura A, Tanaka Y.Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa[J]. BBA-Gene Structure and Expression, 1999, 1446:149-155. [54] Yamaguchi T, Apse M P, Shi H, et al.Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(21):12510-12515. [55] Bassil E, Blumwald E.The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J]. The Plant Cell, 2011, 23(1):224-239. [56] Blumwald E, Aharon GS, Apse MP.Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465(1):140-151. [57] Zhang HX, Blumwald E.Transgenic salt tolerant tomato plants accumulate salt in fruit[J]. Nature Biotechnology, 2001, 19(8):765-768. [58] Xue ZY, Zhi DY, Xue GP.Enhanced salt tolerance of transgenic wheat(Tritivum aestivum L.)expressing a vacuolar Na+/ H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na +[J]. Plant Science, 2004, 167(4):859-899. [59] He CX, Yan JQ, Shen GX.Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the fields[J]. Plant Cell Physiology, 2005, 46(11):1848-1854. [60] Julkowska MM, et al.Tuning plant signaling and growth to survive salt[J]. Trends in Plant Science, 2015, 20(9):586-594. [61] Hernández A, Jiang X, Cubero B, et al.Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast:the endosome/prevacuolar compartment is a target for salt toxicity[J]. J Biol Chem, 2009, 284(21):14276-14285. [62] Hamaji K, Nagira M, Yoshida K, et al.Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis[J]. Plant & Cell Physiology, 2009, 50:2023-2033. [63] Mazel A, Leshem Y, Tiwari BS, et al.Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRAB7(AtRABG3E)[J]. Plant Physiology, 2004, 134:118-128. [64] Blumwald E, Aharon GS, Apse MP.Sodium transport in plant cells[J]. Biochimicaet Biophysica Acta, 2000, 1465:140-151. [65] Blumwald E, Engineering. Solt tolerance in plants[J]. Biotech-nology and Genetic Engineering Reviews, 2003, 20(1):261-276. |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[3] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[4] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[5] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[6] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[7] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[8] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[9] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
[10] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
[11] | 张彤彤, 郑登俞, 吴忠义, 张中保, 于荣. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10): 115-123. |
[12] | 马亚男, 卢旭, 魏云春, 李康, 魏若男, 李胜, 马绍英. 葡萄AKR基因家族的鉴定和组织特异性表达分析[J]. 生物技术通报, 2021, 37(8): 141-151. |
[13] | 刘娟, 朱春晓, 肖雪琼, 莫陈汨, 王高峰, 肖炎农. 淡紫紫孢菌亲环蛋白PlCYP6 互作蛋白的筛选[J]. 生物技术通报, 2021, 37(7): 137-145. |
[14] | 张永兰, 解莉楠. HKT1在植物耐盐机制中的研究进展[J]. 生物技术通报, 2021, 37(6): 213-224. |
[15] | 王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||