生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 9-20.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0281
收稿日期:
2020-03-16
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
乔孟欣,女,硕士研究生,研究方向:作物遗传育种;E-mail: 基金资助:
QIAO Meng-xin1(), LI Su-zhen2, CHEN Jing-tang1(
)
Received:
2020-03-16
Published:
2020-11-26
Online:
2020-11-20
摘要:
Fe是植物生长发育过程中最重要的微量元素之一,植物缺铁会导致叶片黄化,进而影响产量。植物吸收转运铁共有两种机理,即机理I和机理II,相应的植物称为机理I植物和机理II植物,机理I植物主要包括双子叶植物和非禾本科单子叶植物,机理II植物主要包括禾本科植物。铁还原酶基因FRO(Ferric reduction oxidase)作为机理I植物中的关键基因已在多种植物中被发现与研究,包括禾本科植物水稻。为了解该基因在玉米中的功能,对玉米铁还原酶基因ZmFRO2进行了基因功能的分析,包括生物信息学分析、表达模式分析及亚细胞定位分析,证明了ZmFRO2具有铁还原酶的结构基础且与OsFRO1、MtFRO2、AtFRO6和AtFRO7具有较近的亲缘关系,ZmFRO2定位在质膜与胞质,该基因主要在叶片中大量表达,且该基因的表达受缺铁先诱导后抑制。另外,通过农杆菌介导的方法获得了过表达ZmFRO2玉米植株,对其进行铁还原酶活力及锌铁含量测定发现过表达ZmFRO2能够提高玉米根部铁还原酶活力,根部、叶片和籽粒的铁含量均有不同程度的升高。通过这些分析和测定为之后基因功能的深入研究奠定基础,进而为提高玉米铁含量提供新的功能基因和新途径。
乔孟欣, 李素贞, 陈景堂. 玉米铁还原酶基因ZmFRO2的功能分析[J]. 生物技术通报, 2020, 36(11): 9-20.
QIAO Meng-xin, LI Su-zhen, CHEN Jing-tang. Functional Analysis of Ferric Reductase Gene ZmFRO2 in Maize[J]. Biotechnology Bulletin, 2020, 36(11): 9-20.
[1] |
Guerinot ML, Ying Y. Iron:Nutritious, noxious, and not readily available[J]. Plant Physiology, 1994,104(3):815-820.
doi: 10.1104/pp.104.3.815 URL pmid: 12232127 |
[2] |
Romheld V, Marschner H. Evidence for a specific uptakesystem for iron phytosiderophores in roots of grasses[J]. Plant Physiology, 1986,80:175-180
doi: 10.1104/pp.80.1.175 URL pmid: 16664577 |
[3] |
Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(11):5624-5628.
doi: 10.1073/pnas.93.11.5624 URL pmid: 8643627 |
[4] |
Wu HL, Li LH, Du J, et al. Molecular and biochemical characterization of the Fe(III)chelate reductase gene family in Arabidopsis thaliana[J]. Plant Cell Physiology, 2005,46(9):1505-1514.
doi: 10.1093/pcp/pci163 URL pmid: 16006655 |
[5] |
Li LH, Cheng XD, Ling HQ. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004,54(1):125-136.
URL pmid: 15159639 |
[6] |
Santos CS, Roriz M, Carvalho SM, et al. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants(Glycine max L.)[J]. Frontiers in Plant Science, 2015,6:325.
URL pmid: 26029227 |
[7] |
Ding H, Duan LH, Wu HL, et al. Regulation of AhFRO1, a Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009,136(3):274-283.
doi: 10.1111/j.1399-3054.2009.01219.x URL pmid: 19453500 |
[8] |
Del CO-MM, Santoyo G, Faríasrodríguez R, et al. Identification and expression analysis of multiple FRO gene copies in Medicago truncatula[J]. Genetics and Molecular Research, 2012,11(4):4402-4410.
doi: 10.4238/2012.October.9.7 URL pmid: 23096909 |
[9] |
Ishimaru Y, Suzuki M, Tsukamoto T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. The Plant Journal, 2006,45(3):335-346.
URL pmid: 16412081 |
[10] |
Finatto T, de Oliveira AC, Chaparro C, et al. Abiotic stress and genome dynamics:specific genes and transposable elements response to iron excess in rice[J]. Rice, 2015,8:13.
doi: 10.1186/s12284-015-0045-6 URL pmid: 25844118 |
[11] |
Pereira MP, Santos C, Gomes A, et al. Cultivar variability of iron uptake mechanisms in rice(Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2014,85:21-30.
doi: 10.1016/j.plaphy.2014.10.007 URL pmid: 25394797 |
[12] |
Li Q, Yang A, Zhang WH. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.)[J]. Journal of Experimental Botany, 2016,67(22):6431-6444.
URL pmid: 27811002 |
[13] |
Kobayashi T, Nakanishi IR, Nishizawa NK. Iron deficiency responses in rice roots[J]. Rice, 2014,7(1):27.
doi: 10.1186/s12284-014-0027-0 URL pmid: 26224556 |
[14] |
Cheng LJ, Wang F, Shou HX, et al. Mutation in nicotianamine aminotransferase stimulated the Fe(II)acquisition system and led to iron accumulation in rice[J]. Plant Physiology, 2007,145(4):1647-1657.
doi: 10.1104/pp.107.107912 URL pmid: 17951455 |
[15] | Masuda H, Aung MS, Kobayashi T, et al. Enhancement of iron acquisition in rice by the mugineic acid synthase gene with ferric iron reductase gene and OsIRO2 confers tolerance in submerged and nonsubmerged calcareous soils[J]. Frontier of Plant Science, 2019,10:1179. |
[16] |
Liu CS, Gao T, Liu YH, et al. Isotopic fingerprints indicate distinct strategies of Fe uptake in rice[J]. Chemical Geology, 2019,524:323-328.
doi: 10.1016/j.chemgeo.2019.07.002 URL |
[17] |
Wairich A, de Oliveira BHN, Arend EB, et al. The combined strategy for iron uptake is not exclusive to domesticated rice(Oryza sativa)[J]. Scientific Reports, 2019,9(1):16144.
doi: 10.1038/s41598-019-52502-0 URL pmid: 31695138 |
[18] |
Li SZ, Zhou XJ, Huang YQ, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein(ZIP)gene family in maize[J]. BMC Plant Biology, 2013,13(1):114.
doi: 10.1186/1471-2229-13-114 URL |
[19] |
Zanin L, Venuti S, Zamboni A, et al. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions[J]. BMC Genomics, 2017,18(1):154.
doi: 10.1186/s12864-016-3478-4 URL pmid: 28193158 |
[20] |
Li SZ, Zhou XJ, Li HB, et al. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis[J]. PLoS One, 2015,10(8):e0136647.
doi: 10.1371/journal.pone.0136647 URL pmid: 26317616 |
[21] | Li SZ, Zhou XJ, Chen JT, et al. Is there a strategy I iron uptake mechanism in maize?[J] . Plant Signal Behavior, 2018,13(4):e1161877. |
[22] | 李素贞. 锌铁调控转运体ZmZIP5在玉米中的功能研究[D]. 北京:中国农业科学院, 2019. |
Li SZ. Function of the maize zinc-regulated transporters, iron-regulated transporter-like protein(ZIP5)in maize[J]. Beijing:Chinese Academy of Agricultural Sciences, 2019. | |
[23] |
Connolly EL, Campbell NH, Grotz N, et al. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control[J]. Plant Physiology, 2003,133(3):1102-1110.
doi: 10.1104/pp.103.025122 URL pmid: 14526117 |
[24] |
Mukherjee I, Campbell NH, Ash JS, et al. Expression profiling of the Arabidopsis ferric chelate reductase(FRO)gene family reveals differential regulation by iron and copper[J]. Planta, 2006,223(6):1178-1190.
URL pmid: 16362328 |
[25] |
Lopez-Millan AF, Duy D, Philippar K. Chloroplast iron transport proteins - function and impact on plant physiology[J]. Frontiers in Plant Science, 2016,7:178.
URL pmid: 27014281 |
[26] |
Jeong J, Connolly EL. Iron uptake mechanisms in plants:Functions of the FRO family of ferric reductases[J]. Plant Science, 2009,176(6):709-714.
doi: 10.1016/j.plantsci.2009.02.011 URL |
[27] |
Ling HQ, Bauer P, Bereczky Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(21):13938-13943.
URL pmid: 12370409 |
[28] |
Vasconcelos MW, Clemente TE, Grusak MA. Evaluation of constitutive iron reductase(AtFRO2)expression on mineral accumulation and distribution in soybean(Glycine max L.)[J]. Frontiers in Plant Science, 2014,5:112.
doi: 10.3389/fpls.2014.00112 URL pmid: 24765096 |
[29] |
Li LY, Cai QY, Yu DS, et al. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis[J]. Molecular Biology Reports, 2011,38(6):3605-3613.
doi: 10.1007/s11033-010-0472-9 URL pmid: 21104018 |
[30] | Jain A, Dashner ZS, Connolly EL. Mitochondrial iron transporters(MIT1 and MIT2)are essential for iron homeostasis and embryogenesis in Arabidopsis thaliana[J]. Frontier of Plant Science, 2019,10:1449. |
[31] | Li L, Ye L, Kong Q, et al. A vacuolar membrane ferric-chelate reductase, OsFRO1, alleviates Fe toxicity in rice(Oryza sativa L.)[J]. Frontier of Plant Science, 2019,10:700. |
[32] |
Kong DY, Chen CL, Wu HL, et al. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato[J]. Journal of Genetics and Genomics, 2013,40(11):565-573.
doi: 10.1016/j.jgg.2013.08.002 URL pmid: 24238610 |
[33] |
Paolacci AR, Celletti S, Catarcione G, et al. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato(Solanum lycopersicum L.)seedlings[J]. Journal of Integrative Plant Biology, 2014,56(1):88-100.
doi: 10.1111/jipb.12110 URL pmid: 24119307 |
[34] |
Andaluz S, Rodriguez-Celma J, Abadia A, et al. Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency[J]. Plant Physiology and Biochemistry, 2009,47(11-12):1082-1088.
URL pmid: 19716309 |
[35] |
Masuda H, Shimochi E, Hamada T, et al. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil[J]. PLoS One, 2017,12(3):e0173441.
doi: 10.1371/journal.pone.0173441 URL pmid: 28278216 |
[1] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[2] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[3] | 乔孟欣, 李素贞, 陈景堂. 植物铁还原酶基因FRO的研究进展[J]. 生物技术通报, 2019, 35(7): 162-171. |
[4] | 王金龙, 王薇薇, 万平, 杨凯, 赵波, 李奕松. 缺铁胁迫对小豆幼苗生理特性的影响[J]. 生物技术通报, 2016, 32(10): 141-147. |
[5] | 张怡;李成伟;. 酵母异源功能互补在植物基因克隆中的应用[J]. , 2010, 0(07): 14-21. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 452
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 477
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||