[1] |
Organization WH. Trace elements in human nutrition and health[M]. Geneva:World Health Organization, 1996.
|
[2] |
Vallee BL, Falchuk KH. The biochemical basis of zinc physiology[J]. Physiological Reviews, 1993,73(1):79-118.
URL
pmid: 8419966
|
[3] |
Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins[J]. Biochemistry, 1990,29(24):5647-5659.
URL
pmid: 2200508
|
[4] |
Cakmak I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification?[J]. Plant and Soil, 2008,302(1-2):1-17.
|
[5] |
Huffman DL, O’halloran TV. Function, structure, and mechanism of intracellular copper trafficking proteins[J]. Annual Review of Biochemistry, 2001,70(1):677-701.
doi: 10.1146/annurev.biochem.70.1.677
URL
|
[6] |
Kende H. Biochemistry and molecular biology of plants[J]. Science, 2000,290(5492):719-719.
|
[7] |
Millaleo R, Reyes-Diaz M, Ivanov AG, et al. Manganese as essential and toxic element for plants:transport, accumulation and resistance mechanisms[J]. Journal of Soil Science and Plant Nutrition, 2010,10(4):476-494.
|
[8] |
Wu X, Cobbina SJ, Mao G, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment[J]. Environ Sci Pollut Res Int, 2016,23(9):8244-8259.
doi: 10.1007/s11356-016-6333-x
URL
pmid: 26965280
|
[9] |
Goyer RA, Cherian ME. Toxicology of metals[M]. Berlin:Springer, 1995.
|
[10] |
Aziz R, Rafiq MT, Li T, et al. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines(Caco-2/HL-7702)[J]. J Agric Food Chem, 2015,63(13):3599-3608.
doi: 10.1021/jf505557g
URL
pmid: 25738308
|
[11] |
Nomam M, Noguchie M, Tamaki E. A new amino acid, nicotianamine, from tobacco leaves[J]. Tetrahedron Letters, 1971: 2017-2020.
URL
pmid: 20305723
|
[12] |
Suzuki K, Higuchi K, Nakanishi H, et al. Cloning of nicotianamine synthase genes from Arabidopsis thaliana[J]. Soil Science and Plant Nutrition, 1999,45(4):993-1002.
|
[13] |
Wiren VN. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants[J]. Plant Physiology, 1999,119(3):1107-1114.
doi: 10.1104/pp.119.3.1107
URL
pmid: 10069850
|
[14] |
Nishiyama R, Kato M, Nagata S, et al. Identification of Zn-nicotianamine and Fe-2'-deoxymugineic acid in the phloem sap from rice plants(Oryza sativa L.)[J]. Plant and Cell Physiology, 2012,53(2):381-390.
URL
pmid: 22218421
|
[15] |
Schuler M, Rellan-Alvarez R, Fink-Straube C, et al. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis[J]. Plant Cell, 2012,24(6):2380-2400.
URL
pmid: 22706286
|
[16] |
Takahashi M, Terada Y, Nakai I, et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development[J]. Plant Cell, 2003,15(6):1263-1280.
URL
pmid: 12782722
|
[17] |
Ma JF, Taketa S, Chang YC, et al. Biosynjournal of phytosiderophores in several Triticeae species with different genomes[J]. Journal of Experimental Botany, 1999,50(334):723-726.
|
[18] |
Bashir K, Nozoye T, Nagasaka S, et al. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice[J]. Journal of Experimental Botany, 2017,68(7):1785-1795.
doi: 10.1093/jxb/erx065
URL
pmid: 28369596
|
[19] |
Banakar R, Alvarez Fernandez A, Diaz-Benito P, et al. Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium[J]. Journal of Experimental Botany, 2017,68(17):4983-4995.
doi: 10.1093/jxb/erx304
URL
pmid: 29048564
|
[20] |
Nozoye T, Nagasaka S, Kobayashi T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of Biological Chemistry, 2011,286(7):5446-5454.
doi: 10.1074/jbc.M110.180026
URL
|
[21] |
Nozoye T, Von Wiren N, Sato Y, et al. Characterization of the nicotianamine exporter ENA1 in rice[J]. Frontiers in Plant Science, 2019,10:502.
doi: 10.3389/fpls.2019.00502
URL
pmid: 31114596
|
[22] |
Haydon MJ, Kawachi M, Wirtz M, et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis[J]. Plant Cell, 2012,24(2):724-737.
URL
pmid: 22374397
|
[23] |
Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiology, 2007,143(4):1705-1719.
URL
pmid: 17277087
|
[24] |
Pianelli K, Mari S, Marques L, et al. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana[J]. Transgenic Res, 2005,14(5):739-748.
doi: 10.1007/s11248-005-7159-3
URL
|
[25] |
Sugai A, Sato H, Yoneda M, et al. Phosphorylation of measles virus nucleoprotein affects viral growth by changing gene expression and genomic RNA stability[J]. Journal of Virology, 2013,87(21):11684-11692.
doi: 10.1128/JVI.01201-13
URL
pmid: 23966404
|
[26] |
Du X, Wang H, He J, et al. Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations[J]. Gene, 2018,672:1-7.
doi: 10.1016/j.gene.2018.06.015
URL
pmid: 29885462
|
[27] |
Irtelli B, Petrucci WA, Navari-Izzo F. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess[J]. Journal of Experimental Botany, 2009,60(1):269-277.
doi: 10.1093/jxb/ern286
URL
pmid: 19033552
|
[28] |
Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019,133:11-20.
URL
pmid: 30385345
|
[29] |
Kim S, Takahashi M, Higuchi K, et al. Increased nicotianamine biosynjournal confers enhanced tolerance of high levels of metals, in particular nickel, to plants[J]. Plant and Cell Physiology, 2005,46(11):1809-1818.
doi: 10.1093/pcp/pci196
URL
pmid: 16143596
|
[30] |
Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. Plant Journal, 2010,62(3):379-390.
URL
pmid: 20128878
|
[31] |
Sasaki A, Yamaji N, Xia J, et al. OsYSL6 is involved in the detoxification of excess manganese in rice[J]. Plant Physiol, 2011,157(4):1832-1840.
doi: 10.1104/pp.111.186031
URL
pmid: 21969384
|