生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 149-161.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0476
收稿日期:
2020-04-23
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
陈妤,女,硕士研究生,研究方向:林木遗传育种;E-mail: 基金资助:
CHEN Yu(), ZHU Pei-huang, LI Rong, ZHU Ling-zhi, JI Kong-shu()
Received:
2020-04-23
Published:
2021-02-26
Online:
2021-02-26
摘要:
次生代谢产物的生物学作用被认为是高等植物生存和进化的关键。类异戊二烯(Isoprenoids)化合物作为植物中极为丰富的一类次生代谢物,在植物信号转导、适应气候、繁殖及防御等方面具有多种生理功能。此外,植物类异戊二烯化合物还广泛应用于制药、天然乳胶、香料及有机合成等工业领域,具有重要的经济价值。异戊烯基转移酶(Prenyltransferase,PT)是连接上游甲羟戊酸和磷酸甲基赤藓糖途径与下游不同结构类异戊二烯生物合成分支点的关键酶,因此异戊烯基转移酶及其基因在整个类异戊二烯生物合成与调控过程中具有重要地位。本文介绍了植物类异戊二烯生物合成通路、异戊烯基转移酶基因克隆与分析、酶功能鉴定及其系统分类,并介绍了其在针叶树中的研究进展,旨在为植物类异戊二烯化合物生物合成与调控机制的进一步研究提供帮助,同时为针叶树种产脂和抗生物逆境的分子水平研究指明相关方向。
陈妤, 朱沛煌, 李荣, 朱灵芝, 季孔庶. 植物异戊烯基转移酶研究进展[J]. 生物技术通报, 2021, 37(2): 149-161.
CHEN Yu, ZHU Pei-huang, LI Rong, ZHU Ling-zhi, JI Kong-shu. Research Progress of Plant Prenyltransferases[J]. Biotechnology Bulletin, 2021, 37(2): 149-161.
图2 异戊烯基转移酶基因氨基酸序列比对 CsGPPS:大麻Cannabis sativa(ARE72269.1);GrGPPS:滇龙胆Gentiana rigescens(AHK06853.1);LcGFPPS:米团花Leucosceptrum canum(ALT16903.1);PgGPPS:白云杉Picea glauca(AHE15048.1);PtGGPPS:火炬松Pinus taeda(QBS32941.1);JcGGPPS:麻风树Jatropha curcas(ADD82422.1);AtGGPPS:拟南芥Arabidopsis thaliana(NP_179960.1);AtFPPS:拟南芥Arabidopsis thaliana(NP_199588.1);SmFPPS:丹参Salvia miltiorrhiza(ABV08819.1);TmFPPS:曼地亚红豆杉Taxus × media(AAS19931.1)
图3 不同植物异戊烯基转移酶基因系统进化树 外圈:裸子植物为黄色,被子植物为黄绿色,蕨类植物为紫色;内圈:GPPS以青色为背景,GGPPS以淡黄色为背景,FPPS以橙色为背景,GFPPS以淡紫色为背景。 Gentiana rigescens:滇龙胆;Swertia mussotii:川西獐牙菜;Jasminum sambac:茉莉;Castanea mollissima:板栗;Cannabis sativa:大麻;Morus alba:桑;Taraxacum kok-saghyz:橡胶草;Scoparia dulcis:野甘草;Zea mays:玉米;Leucosceptrum canum:米团花;Arabidopsis thaliana:拟南芥;Jatropha curcas:麻风树;Picea abies:欧洲云杉;Ginkgo biloba:银杏;Taxus canadensis:加拿大红豆杉;Taxus × media:曼地亚红豆杉;Abies grandis:冷杉;Picea glauca:白云杉;Pinus massoniana:马尾松;Pinus taeda:火炬松;Populus trichocarpa:毛果杨;Gardenia jasminoides:栀子;Selaginella moellendorffii:卷柏;Helianthus annuus:向日葵;Salvia miltiorrhiza:丹参;Hevea brasiliensis:橡胶树;Citrus sinensis:甜橙;Paeonia lactiflora:芍药;Catharanthus roseus:长春花;Quercus robur:夏栎;Camptotheca acuminata:喜树;Vitis vinifera:葡萄;Glycine max:大豆;Medicago sativa:紫花苜蓿;Oryza sativa:水稻;Chimonanthus praecox:腊梅;Magnolia chapensis:乐昌含笑;Musa acuminata:香蕉;Alisma plantago-aquatica:泽泻;Santalum album:檀香;Artemisia annua:黄花蒿;Citrus × microcarpa:柑橘;Cyclocarya paliurus:青钱柳;Panax ginseng:人参
基因名称 | 物种 | 登录号 | 文献 |
---|---|---|---|
PgIDS | Picea glauca | AHE15048.1 | [ |
PtIDS1/PtIDS2 | Pinus taeda | EF095154/EF095155 | [ |
AgGPPS | Abies grandis | AAN01133-5 | [ |
PaGPPS | Picea abies | ACA21458-9 | [ |
PaFPPS | Picea abies | ACA21460 | [ |
TmFPPS | Taxus media | AY461811 | [ |
AgGGPPS | Abies grandis | AAL17614 | [ |
TcaGGPPS | Taxus canadensis | AAD16018 | [ |
PaGGPPS | Picea abies | ACA21461-2 | [ |
PaGPPS/GGPPS | Picea abies | ACZ57571 | [ |
PmGGPPS | Pinus massoniana | AGU43761.1 | [ |
CmGGPPs | Cephalotaxus mannii | AGM53487.1 | [ |
表1 针叶树中已克隆的部分异戊烯基转移酶基因
基因名称 | 物种 | 登录号 | 文献 |
---|---|---|---|
PgIDS | Picea glauca | AHE15048.1 | [ |
PtIDS1/PtIDS2 | Pinus taeda | EF095154/EF095155 | [ |
AgGPPS | Abies grandis | AAN01133-5 | [ |
PaGPPS | Picea abies | ACA21458-9 | [ |
PaFPPS | Picea abies | ACA21460 | [ |
TmFPPS | Taxus media | AY461811 | [ |
AgGGPPS | Abies grandis | AAL17614 | [ |
TcaGGPPS | Taxus canadensis | AAD16018 | [ |
PaGGPPS | Picea abies | ACA21461-2 | [ |
PaGPPS/GGPPS | Picea abies | ACZ57571 | [ |
PmGGPPS | Pinus massoniana | AGU43761.1 | [ |
CmGGPPs | Cephalotaxus mannii | AGM53487.1 | [ |
[1] |
Rodríguez-Concepción M. Plant isoprenoids:a general overview[J]. Methods in Molecular Biology, 2014,1153:1-5.
doi: 10.1007/978-1-4939-0606-2_1 URL pmid: 24777786 |
[2] |
Tetali SD. Terpenes and isoprenoids:a wealth of compounds for global use[J]. Planta, 2019,249:1-8.
URL pmid: 30467631 |
[3] | 李军玲, 罗晓东, 赵沛基, 等. 植物萜类生物合成中的后修饰酶[J]. 云南植物研究, 2009,31(5):461-468. |
Li JL, Luo XD, Zhao PJ, et al. Post-modification enzymes involved in the biosynjournal of plant terpenoids[J]. Acta Botanica Yunnanica, 2009,31(5):461-468. | |
[4] | 高娟, 曾英, 卢山. 芳香族异戊烯转移酶的研究进展[J]. 植物学报, 2010,45(6):751-759. |
Gao J, Zeng Y, Lu S. Research progress of aromatic prenyltransferase[J]. Chinese Bulletin of Botany, 2010,45(6):751-759. | |
[5] |
Liang PH. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases[J]. Biochemistry, 2009,48(28):6562-6570.
doi: 10.1021/bi900371p URL pmid: 19537817 |
[6] |
Swiezewska E, Danikiewicz W. Polyisoprenoids:structure, biosynjournal and function[J]. Progress in Lipid Research, 2005,44(4):235-258.
URL pmid: 16019076 |
[7] |
Surmacz L, Swiezewska E. Polyisoprenoids - secondary metabolites or physiologically important superlipids?[J]. Biochemical & Biophysical Research Communications, 2011,407(4):627-632.
doi: 10.1016/j.bbrc.2011.03.059 URL pmid: 21419101 |
[8] |
Akhtar TA, Surowiecki P, Siekierska H, et al. Polyprenols are synthesized by a plastidial cis-prenyltransferase and influence photosynthetic performance[J]. Plant Cell, 2017,29:1709-1725.
doi: 10.1105/tpc.16.00796 URL pmid: 28655749 |
[9] |
Vandermoten S, Haubruge É, Cusson M. New insights into short-chain prenyltransferases:structural features, evolutionary history and potential for selective inhibition[J]. Cellular & Molecular Life Sciences, 2009,66(23):3685-3695.
doi: 10.1007/s00018-009-0100-9 URL pmid: 19633972 |
[10] | Kopcsayová D, Vranová E. Functional gene network of prenyltransferases in Arabidopsis thaliana[J]. Molecules, 2019,24(24):4556. |
[11] | 王惠, 赵德刚, 韩玉珍. 植物中的异戊烯基转移酶[J]. 植物生理学报, 2005,41(5):684-690. |
Wang H, Zhao DG, Han YZ. Prenyltransferase in plants[J]. Acta Plant Physiology, 2005,41(5):684-690. | |
[12] |
刘晓, 陈日道, 谢丹, 等. 微生物来源芳香类化合物异戊烯基转移酶研究进展[J]. 药学学报, 2013(2):161-169.
pmid: 16671548 |
Liu X, Chen RD, Xie D, et al. Research progress in aromatic prenyltransferases originated from microorganisms[J]. Acta Pharmaceutica Sinica, 2013(2):161-169.
URL pmid: 16671548 |
|
[13] |
Kumano T, Stéphane BR, Joseph PN, et al. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities[J]. Bioorg Med Chem, 2008,16(17):8117-8126.
doi: 10.1016/j.bmc.2008.07.052 URL pmid: 18682327 |
[14] | Tholl D. Biosynjournal and biological functions of terpenoids in plants[J]. Advances in Biochemical Engineering Biotechnology, 2015,148:63. |
[15] |
Pazouki L, Niinemets Ü. Multi-substrate terpene synthases:their occurrence and physiological significance[J]. Frontiers in Plant Science, 2016,7:1019.
doi: 10.3389/fpls.2016.01019 URL pmid: 27462341 |
[16] |
Abbas F, Ke YG, Yu RC, et al. Volatile terpenoids:multiple functions, biosynjournal, modulation and manipulation by genetic engineering[J]. Planta, 2017,246(5):803-816.
URL pmid: 28803364 |
[17] | Chappell J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants[J]. Annu Rev Plant Physiol Plant Mol Biol, 1995,46:521-547. |
[18] |
Oldfield E, Lin FY. Terpene biosynjournal:modularity rules[J]. Angewandte Chemie, 2012,51(5):1124-1137.
doi: 10.1002/anie.201103110 URL pmid: 22105807 |
[19] |
Rodriguezconcepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynjournal in bacteria and plastids:a metabolic milestone achieved through genomics[J]. Plant Physiology, 2002,130(3):1079-1089.
URL pmid: 12427975 |
[20] |
Lange BM, Ghassemian M. Genome organization in Arabidopsis thaliana:a survey for genes involved in isoprenoid and chlorophyll metabolism[J]. Plant Molecular Biology, 2003,51(6):925-948.
doi: 10.1023/a:1023005504702 URL pmid: 12777052 |
[21] |
Chen F, Tholl D, Bohlmann J, et al. The family of terpene synthases in plants:a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom[J]. The Plant Journal:for Cell and Molecular Biology, 2011,66(1):212-229.
doi: 10.1111/j.1365-313X.2011.04520.x URL pmid: 21443633 |
[22] |
Kellogg BA, Poulter CD. Chain elongation in the isoprenoid biosynthetic pathway[J]. Current Opinion in Chemical Biology, 1997,1(4):570-578.
doi: 10.1016/s1367-5931(97)80054-3 URL pmid: 9667899 |
[23] |
Burke C, Wildung MR, Croteau R, et al. Geranyl diphosphate synthase:cloning, expression, and characterization of this prenyltransferase as a heterodimer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(23):13062-13067.
URL pmid: 10557273 |
[24] |
Rai A, Smita SS, Singh AK, et al. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynjournal[J]. Molecular Plant, 2013,6(5):1531-1549.
doi: 10.1093/mp/sst058 URL |
[25] |
Bouvier F, Suire C, Dharlingue A, et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synjournal in plant cells[J]. Plant Journal, 2000,24(2):241-252.
doi: 10.1046/j.1365-313x.2000.00875.x URL |
[26] |
Wang G, Dixon RA. Heterodimeric geranyl(geranyl)diphosphate synthase from hop(Humulus lupulus)and the evolution of monoterpene biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(24):9914-9919.
doi: 10.1073/pnas.0904069106 URL pmid: 19482937 |
[27] |
Schmidt A, Gershenzon J. Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce(Picea abies)[J]. Phytochemistry, 2008,69(1):49-57.
doi: 10.1016/j.phytochem.2007.06.022 URL pmid: 17673268 |
[28] | 于盱, 梁呈元, 刘艳, 等. 薄荷GPPS基因原核表达及RNA干扰载体构建[J]. 生物技术通报, 2014(9):84-88. |
Yu Y, Liang CY, Liu Y, et al. Prokaryotic expreesion and RNA interference vector construction for geranyl diphosphate synthase of Mentha haplocalyx Briq.[J]. Biotechnology Bulletin, 2014(9):84-88. | |
[29] |
Tholl D, Kish CM, Orlova I, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases[J]. The Plant Cell, 2004,16(4):977-992.
doi: 10.1105/tpc.020156 URL pmid: 15031409 |
[30] | 屠李婵, 张逸风, 苏平, 等. 雷公藤牻牛儿基焦磷酸合酶基因TwGPPS克隆与表达分析[J]. 中国中药杂志, 2017,42(2):220-225. |
Tu LC, Zhang YF, Su P, et al. Cloning and protein expression analysis of geranyl diphosphate synthase genes in Tripterygium wilfordii[J]. Chinese Journal of Traditional Chinese Medicine, 2017,42(2):220-225. | |
[31] | 王彩云, 李富生, 李涛, 等. 滇龙胆GrGPPS基因的克隆及其序列分析与原核表达[J]. 中草药, 2014,45(14):2060-2068. |
Wang CY, Li FS, Li T, et al. Cloning, sequence analysis, and prokaryotic expression of GrGPPS gene in Gentiana rigescens[J]. Chinese Traditional and Herbal Drugs, 2014,45(14):2060-2068. | |
[32] | Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender(Lavandula)[J]. Plant Molecular Biology, 2020,102(3):517-535. |
[33] |
Ueoka H, Sasaki K, Miyawaki T, et al. A cytosol-localized geranyl diphosphate synthase from Lithospermum erythrorhizon and its molecular evolution[J]. Plant Physiology, 2020,182:1933-1945.
doi: 10.1104/pp.19.00999 URL pmid: 31974127 |
[34] |
Chuang YC, Hung YC, Hsu CY, et al. A dual repeat cis-element determines expression of GERANYL DIPHOSPHATE SYNTHASE for monoterpene production in Phalaenopsis orchids[J]. Frontiers in Plant Science, 2018,9:765.
URL pmid: 29922327 |
[35] | Zhao YX, Chen YC, Gao M, et al. Overexpression of geranyl diphosphate synthase small subunit 1(LcGPPS. SSU1)enhances the monoterpene content and biomass[J]. Industrial Crops & Products, 2020,143:111926. |
[36] |
Kumar SR, Shilpashree HB, Nagegowda DA. Terpene moiety enhancement by overexpression of geranyl(geranyl)diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus[J]. Frontiers in Plant Science, 2018,9:942.
doi: 10.3389/fpls.2018.00942 URL pmid: 30034406 |
[37] | Heldt HW, Heldt F. In the photorespiratory pathway phosphoglycolate formed by the oxygenase activity of RubisCo is recycled-7[M]. Plant Biochemistry, 2005: 195-211. |
[38] | Reilly JF, Martinez SD, Mickey G, et al. A novel role for farnesyl pyrophosphate synthase in fibroblast growth factor-mediated signal transduction[J]. Biochemical Journal, 2002,366(2):501-510. |
[39] |
Kikuchi S, Satoh K, Nagata T, et al. Collection, mapping, and annotation of over 28, 000 cDNA clones from japonica rice[J]. Science, 2003,301(5631):376-379.
doi: 10.1126/science.1081288 URL pmid: 12869764 |
[40] |
Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009,457(7229):551-556.
doi: 10.1038/nature07723 URL pmid: 19189423 |
[41] | 杨欣, 魏建和, 刘娟, 等. 白木香法呢基焦磷合酶基因AsFPS1的克隆及表达分析[J]. 中国中药杂志, 2013,38(19):3251-3255. |
Yang X, Wei JH, Liu J, et al. Cloning and expression analysis of farnesyl pyrophosphate synthase from Aquilaria sinensis[J]. Chinese Journal of Traditional Chinese Medicine, 2013,38(19):3251-3255. | |
[42] | 阮琴妹, 曹雄军, 孙化鹏, 等. 洋常春藤法呢基焦磷酸合酶基因的克隆与序列分析[J]. 湖南农业大学学报:自然科学版, 2016,42(2):136-141. |
Ruan QM, Cao XJ, Sun HP, et al. Cloning and sequence analyzing of farnesyl pyrophosphate synthase from Hedera helix[J]. Journal of Hunan Agricultural University:Natural Sciences, 2016,42(2):136-141. | |
[43] | 张瑶瑶, 宋丽, 刘伟, 等. 香樟FPPS基因的克隆及生物信息学分析[J]. 分子植物育种, 2018,16(19):6276-6281. |
Zhang YY, Song L, Liu W, et al. Cloning and bioinformatic analysis of FPPS gene from Cinnamomum camphora[J]. Molecular Plant Breeding, 2018,16(19):6276-6281. | |
[44] |
Closa M, Vranová E, Bortolotti C, et al. The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynjournal, and complete loss of FPP synthase activity causes early developmental arrest[J]. The Plant Journal:for Cell and Molecular Biology, 2010,63(3):512-525.
doi: 10.1111/j.1365-313X.2010.04253.x URL pmid: 20497375 |
[45] | Fei Y, Li N, Zhang DH, et al. Increased production of ganoderic acids by overexpression of homologous farnesyl diphosphate synthase and kinetic modeling of ganoderic acid production in Ganoderma lucidum[J]. Microbial Cell Factories, 2019,18:115. |
[46] |
Liu C, Sun Z, Shen S, et al. Identification and characterization of the geranylgeranyl diphosphate synthase in Deinococcus radiodurans[J]. Letters in Applied Microbiology, 2013,58(3):219-224.
URL pmid: 24151908 |
[47] |
Schmidt A, Wächtler B, Temp U, et al. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies[J]. Plant Physiology, 2010,152(2):639-655.
URL pmid: 19939949 |
[48] | Hayashi Y. Production of natural rubber from Para rubber tree[J]. Plant Biotechnology, 2009,26(1):67-70. |
[49] | Takaya A, Zhang YW, Asawatreratanakul K, et al. Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis[J]. Biochimica et Biophysica Acta Gene Structure & Expression, 2003,1625(2):214-220. |
[50] | 韩飞, 康林芝, 郭丽琼, 等. 南方红豆杉GGPP合酶基因的克隆与生物信息学分析[J]. 食品与生物技术学报, 2011,30(5):728-733. |
Han F, Kang LZ, Guo LQ, et al. Molecular cloning and sequence analysis of geranyhlgerany pyrophosphate systhase from Taxus wallichiana var. Mairei[J]. Journal of Food Science and Biotechnology, 2011,30(5):728-733. | |
[51] | 李郑娜, 杨春贤, 杨颖舫, 等. 银杏GGPPS转运肽与GFP融合基因表达载体的构建[J]. 安徽农业科学, 2010,38(13):6655-6657. |
Li ZN, Yang CX, Yang YF, et al. The construction of fusion expression vector carrying GFP and TP of GGPPS from Ginkgo biloba L.[J]. Journal of Anhui Agricultural Sciences, 2010,38(13):6655-6657. | |
[52] |
Zhu X, Suzuki K, Saito T, et al. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria[J]. Plant Molecular Biology, 1997,35(3):331-341.
doi: 10.1023/a:1005898805326 URL pmid: 9349257 |
[53] | 李锋, 李明, 金立锋, 等. 烟草牻牛儿基牻牛儿基焦磷酸合成酶基因的克隆及分析[J]. 烟草科技, 2012(5):62-66, 80. |
Li F, Li M, Jin LF, et al. Cloning and characterization of a new gene encoding geranylgeranyl pyrophosphate synthase from Nicotiana tabacum[J]. Tobacco Science & Technology, 2012(5):62-66, 80. | |
[54] |
Su P, Gao LH, Tong YR, et al. Analysis of the role of geranylgeranyl diphosphate synthase 8 from Tripterygium wilfordii in diterpenoids biosynjournal[J]. Plant Science, 2019,285:184-192.
doi: 10.1016/j.plantsci.2019.05.013 URL pmid: 31203883 |
[55] | Huang DQ, Liu WF, Li AG, et al. Discovery of geranylgeranyl pyrophosphate synthase(GGPPS)paralogs from Haematococcus pluvialis based on iso-seq analysis and their function on astaxanthin biosynjournal[J]. Marine Drugs, 2019,17(12):696. |
[56] | 陈建荣, 毛凯权, 陈果, 等. 栀子(Gardenia jasminoides)GGPPS基因小亚基的克隆及表达分析[J]. 分子植物育种, 2020,18(10):3199-3206. |
Chen JR, Mao KQ, Chen G, et al. Cloning and expression analysis of gardenia jasminoides GGPPS small subunit gene[J]. Molecular Plant Breeding, 2020,18(10):3199-3206. | |
[57] |
Tachibana A. A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium pharaonis[J]. FEBS Letters, 1994,341(2-3):291-294.
doi: 10.1016/0014-5793(94)80475-3 URL pmid: 8137956 |
[58] |
Tachibana A, Yano Y, Otani S, et al. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix. Molecularevolution with alteration in product specificity[J]. European Journal of Biochemistry, 2000,267(2):321-328.
doi: 10.1046/j.1432-1327.2000.00967.x URL pmid: 10632701 |
[59] |
Ogawa T, Yoshimura T, Hemmi H. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei:Different role, different evolution[J]. Biochemical & Biophysical Research Communications, 2010,393(1):16-20.
doi: 10.1016/j.bbrc.2010.01.063 URL pmid: 20097171 |
[60] |
Nagel R, Bernholz C, Vranová E, et al. Arabidopsis thaliana isoprenyl diphosphate synthases produce the C25 intermediate geranylfarnesyl diphosphate[J]. The Plant Journal:for Cell and Molecular Biology, 2015,84(5):847-859.
doi: 10.1111/tpj.13064 URL pmid: 26505977 |
[61] |
Wang CY, Chen QW, Fan DJ, et al. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants[J]. Molecular Plant, 2015,9:195-204.
doi: 10.1016/j.molp.2015.10.010 URL pmid: 26537048 |
[62] |
Liu Y, Luo SH, Schmidt A, et al. A geranylfarnesyl diphosphate synthase provides the precursor for sesterterpenoid(C25)formation in the glandular trichomes of the mint species Leucosceptrum canum[J]. The Plant Cell, 2016,28(3):804-822.
doi: 10.1105/tpc.15.00715 URL pmid: 26941091 |
[63] |
Koyama T, Obata S, Osabe M, et al. Thermostable farnesyl diphosphate synthase of Bacillus stearothermophilus:molecular cloning, sequence determination, overproduction, and purification[J]. Journal of Biochemistry, 1993,113(3):355-363.
doi: 10.1093/oxfordjournals.jbchem.a124051 URL pmid: 8486607 |
[64] |
Chen A, Kroon PA, Poulter CD. Isoprenyl diphosphate synthases:protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure[J]. Protein Science:a Publication of the Protein Society, 1994,3(4):600-607.
doi: 10.1002/pro.5560030408 URL pmid: 8003978 |
[65] |
Koyama T, Tajima M, Sano H, et al. Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase[J]. Biochemistry, 1996,35(29):9533-9538.
doi: 10.1021/bi960137v URL pmid: 8755734 |
[66] |
Szkopiñska A, Płochocka D. Farnesyl diphosphate synthase;regulation of product specificity[J]. Acta Biochimica Polonica, 2005,52(1):45-55.
URL pmid: 15827605 |
[67] |
Wang XQ, Ran JH. Evolution and biogeography of gymnosperms[J]. Molecular Phylogenetics and Evolution, 2014,75:24-40.
doi: 10.1016/j.ympev.2014.02.005 URL |
[68] |
Kim SM, Kuzuyama T, Kobayashi A, et al. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase(IDS)is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda[J]. Planta, 2008,227(2):287-298.
URL pmid: 17763867 |
[69] | Armenise L, Simeone M, Piredda R, et al. Validation of DNA barcoding as an efficient tool for taxon identification and detection of species diversity in Italian conifers[J]. European Journal of Forest Research, 2012,131:1337-1353. |
[70] | 杨章旗. 马尾松材性与产脂性状遗传改良研究[D]. 北京:北京林业大学, 2012. |
Yang ZQ. Genetic improvement of key wood and resin properties of Pinus massoniana Lamb[D]. Beijing:Beijing Forestry University, 2012. | |
[71] |
Phillips MA, Croteau RB. Resin-based defenses in conifers[J]. Trends in Plant Science, 1999,4(5):184-190.
doi: 10.1016/s1360-1385(99)01401-6 URL pmid: 10322558 |
[72] |
Keeling CI, Bohlmann J. Diterpene resin acids in conifers[J]. Phytochemistry, 2006,67(22):2415-2423.
URL pmid: 16996548 |
[73] |
Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens[J]. The New Phytologist, 2006,170(4):657-675.
doi: 10.1111/j.1469-8137.2006.01716.x URL pmid: 16684230 |
[74] |
Zulak KG, Bohlmann J. Terpenoid biosynjournal and specialized vascular cells of conifer defense[J]. Journal of Integrative Plant Biology, 2010,52(1):86-97.
doi: 10.1111/j.1744-7909.2010.00910.x URL pmid: 20074143 |
[75] | Boone CK, Aukema BH, Bohlmann J, et al. Efficacy of tree defense physiology varies with bark beetle population density:a basis for positive feedback in eruptive species[J]. Canadian Journal of Forest Research, 2011,41(6):1174-1188. |
[76] | 朱国法, 何晓元. 湿地松采脂负荷大小对树木生长影响试验[J]. 安徽林业科技, 1994(2):44-45. |
Zhu GF, He XY. Test on the influence of slash pine resin load on tree growth[J]. Anhui Forestry Science and Technology, 1994(2):44-45. | |
[77] | 王以珊, 曾令海, 罗敏, 等. 马尾松天然林采脂试验分析[J]. 林业与环境科学, 2002(2):4-7. |
Wang YS, Zeng LH, Luo M, et al. Analysis of tapping resin trial in natural stands of masson’s pine[J]. Forestry and Environmental Science, 2002(2):4-7. | |
[78] | Harvey BG, Wright ME, Quintana RL, et al. High-density renewable fuels based on the selective dimerization of pinenes[J]. Energy & Fuels, 2010,24(1):267-273. |
[79] | Strom BL, Goyer RA, Ingram LL, et al. Oleoresin characteristics of progeny of loblolly pines that escaped attack by the southern pine beetle[J]. Forest Ecology and Management, 2002,158(1):169-178. |
[80] | Martin DM, Bohlmann J. Molecular biochemistry and genomics of terpenoid defenses in conifers[J]. Recent Advances in Phytochemistry, 2005,39(5):29-56. |
[81] |
Miller B, Madilao LL, Ralph SG, et al. Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce[J]. Plant Physiology, 2005,137(1):369-382.
URL pmid: 15618433 |
[82] |
Nagy NE, Franceschi VR, Solheim H, et al. Wound-induced traumatic resin duct development in stems of Norway spruce(Pinaceae):anatomy and cytochemical traits[J]. American Journal of Botany, 2000,87(3):302-313.
URL pmid: 10718991 |
[83] |
Mckay SA, Hunter WL, Godard K, et al. Insect attack and wounding induce traumatic resin duct development and gene expression of(-)-pinene synthase in Sitka spruce[J]. Plant Physiology, 2003,133(1):368-378.
doi: 10.1104/pp.103.022723 URL pmid: 12970502 |
[84] |
Wang P, Liao Z, Guo L, et al. Cloning and functional analysis of a cDNA encoding Ginkgo biloba farnesyl diphosphate synthase[J]. Molecules and Cells, 2004,18(2):150-156.
URL pmid: 15528989 |
[85] |
Nagel R, Berasategui A, Paetz C, et al. Overexpression of an isoprenyl diphosphate synthase in spruce leads to unexpected terpene diversion products that function in plant defense[J]. Plant Physiology, 2014,164(2):555-569.
doi: 10.1104/pp.113.228940 URL pmid: 24346420 |
[86] | Schmidt A, Gershenzon J. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce(Picea abies)and their relation to induced oleoresin formation[J]. Phytochemistry, 2007,68(21):49-59. |
[87] | Liao ZH, Chen M, Gong YF, et al. A new farnesyl diphosphate synthase gene from Taxus media rehder:cloning, characterization and functional complementation[J]. Journal of Integrative Plant Biology, 2006,48(6):692-699. |
[88] |
Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis:cDNA isolation, functional expression, and characterization[J]. Archives of Biochemistry and Biophysics, 2002,405(1):130-136.
doi: 10.1016/s0003-9861(02)00335-1 URL pmid: 12176066 |
[89] |
Burke C, Croteau R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate[J]. The Journal of Biological Chemistry, 2002,277(5):3141-3149.
URL pmid: 11733504 |
[90] |
Hefner J, Ketchum RE, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production[J]. Archives of Biochemistry and Biophysics, 1998,360(1):62-74.
doi: 10.1006/abbi.1998.0926 URL pmid: 9826430 |
[91] | 陈博雯, 覃子海, 王鹏良, 等. 马尾松GGPPS基因克隆及序列分析[J]. 西部林业科学, 2016,45(2):1-6. |
Chen BW, Qin ZH, Wang LP, et al. Cloning and bioinformatics analysis of GGPPS of Pinus massoniana[J]. Journal of West China Forestry Science, 2016,45(2):1-6. | |
[92] | 钱丹, 江雪飞, 乔飞. 海南粗榧GGPPs基因克隆与诱导表达分析[J]. 分子植物育种, 2013,11(2):204-210. |
Qian D, Jiang XF, Qiao F. Cloning and induced expression analysis of GGPP synthase gene from Cephalotaxus mannii[J]. Molecular Plant Breeding, 2013,11(2):204-210. | |
[93] | Jose MC, Jörg B. Oleoresin defenses in conifers:chemical diversity, terpene synthases and limitations of oleoresin defense under climate change[J]. New Phytologist, 2019,224(4):1444-1458. |
[94] | 谈家金, 郝德君, 潘玉雯, 等. 几种松树挥发物对松材线虫行为的影响[J]. 东北林业大学学报, 2009,37(12):58-59. |
Tan JJ, Hao DJ, Pan YW, et al. Effects of several pine tree volatiles on the behavior of pine wood nematode[J]. Journal of Northeast Forestry University, 2009,37(12):58-59. |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[3] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[4] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[7] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[8] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
[9] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[10] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[11] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[12] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
[13] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[14] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
[15] | 刘坤, 李国婧, 杨杞. 参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J]. 生物技术通报, 2022, 38(5): 201-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||