生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 192-204.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1196
李敬蕊(), 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波()
收稿日期:
2022-09-27
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
高洪波,女,博士,教授,研究方向:设施蔬菜与无土栽培;E-mail: hongbogao@hebau.edu.cn作者简介:
李敬蕊,女,博士,副教授,研究方向:蔬菜逆境生理及分子生物学;E-mail: yyljr@hebau.edu.cn
基金资助:
LI Jing-rui(), WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo()
Received:
2022-09-27
Published:
2023-05-26
Online:
2023-06-08
摘要:
生长素输出载体蛋白PIN(PIN-formed)是调控植物生长素极性运输的重要载体,在植物生长发育过程中发挥重要作用,但PIN蛋白在甜瓜基因组中的成员、性质、染色体分布、系统进化、启动子,以及家族成员在高温胁迫中的表达特性尚不明确。本研究利用生物信息学方法在甜瓜(Cucumis melo)全基因组数据库中筛选鉴定到18个CmPIN成员,编码氨基酸数量在51-642之间,分子量介于5.19-70.30 kD之间,不稳定指数在24.33-48.87之间;主要定位于细胞质膜上,除CmPIN6和CmPIN8无跨膜结构外,其他16个PIN蛋白均具有2-11个跨膜结构域;分布在9条染色体上,均含有1-9个Motif,CmPIN家族成员基因含有1-10个外显子,二级结构主要为α-螺旋和无规则卷曲结构。构建了CmPIN家族成员与拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、番茄(Solanum lycopersicum)、玉米(Zea mays)的PIN蛋白进化树,将18个CmPINs聚类为7个亚族,其中亚族Ⅵ中数量最多。启动子顺式作用元件分析显示,甜瓜CmPIN启动子中存在大量的顺式作用基本元件,还含有与激素、光信号和干旱诱导等相关的顺式作用元件。对不同温度处理的甜瓜胚根进行荧光定量分析,结果表明,高温胁迫下Yucasin+IAA处理的CmPIN13和CmPIN18基因表达量显著高于Yucasin处理;NPA+IAA处理的CmPIN2、CmPIN13和CmPIN18基因表达量显著高于NPA处理,推测CmPIN基因家族参与了甜瓜发芽过程高温胁迫的响应调控。
李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204.
LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress[J]. Biotechnology Bulletin, 2023, 39(5): 192-204.
基因 Gene | 序列 Sequence(5'-3') | 退火温度 Annealing temperature Tm/℃ | GC含量 GC content/% | 产物长度 Product length/bp | |
---|---|---|---|---|---|
Actin3 | F | GGCAGTGGTGGTGAACATG | 59.04 | 57.89 | 149 |
R | TTCTGGTGATGGTGTGAGTC | 57.16 | 50.00 | ||
CmPIN3 | F | CTTCTCCTGTTTCTGATGTGT | 51.40 | 42.90 | 123 |
R | GTTCTGTCTTGGTGTCTCTTC | 52.00 | 47.60 | ||
CmPIN13 | F | CAGGTGATGAAAACTAAACGCCA | 59.75 | 43.48 | 172 |
R | CCGGTGCTCAAAATGTCAGG | 59.48 | 55.00 | ||
CmPIN18 | F | GAGTAGGAGGAACAGAGAAAG | 50.10 | 47.60 | 155 |
R | GACTAAGGACCAAGTGAGACC | 52.70 | 52.40 | ||
CmPIN2 | F | GGGTTTGGTGGTGGGTAAGA | 59.52 | 55.00 | 172 |
R | TTTTGAGTTTGACCGATGCAGG | 59.71 | 45.45 |
表1 实时荧光定量PCR中所用引物
Table 1 Primers used in real-time fluorescence quantitative PCR
基因 Gene | 序列 Sequence(5'-3') | 退火温度 Annealing temperature Tm/℃ | GC含量 GC content/% | 产物长度 Product length/bp | |
---|---|---|---|---|---|
Actin3 | F | GGCAGTGGTGGTGAACATG | 59.04 | 57.89 | 149 |
R | TTCTGGTGATGGTGTGAGTC | 57.16 | 50.00 | ||
CmPIN3 | F | CTTCTCCTGTTTCTGATGTGT | 51.40 | 42.90 | 123 |
R | GTTCTGTCTTGGTGTCTCTTC | 52.00 | 47.60 | ||
CmPIN13 | F | CAGGTGATGAAAACTAAACGCCA | 59.75 | 43.48 | 172 |
R | CCGGTGCTCAAAATGTCAGG | 59.48 | 55.00 | ||
CmPIN18 | F | GAGTAGGAGGAACAGAGAAAG | 50.10 | 47.60 | 155 |
R | GACTAAGGACCAAGTGAGACC | 52.70 | 52.40 | ||
CmPIN2 | F | GGGTTTGGTGGTGGGTAAGA | 59.52 | 55.00 | 172 |
R | TTTTGAGTTTGACCGATGCAGG | 59.71 | 45.45 |
基因 Gene | 基因ID Gene ID | 氨基酸数量 Number of amino acids | 分子量 Molecular weight/kD | 理论等电点 Theoretical pI | 不稳定指数 Instability index | 脂溶指数 Aliphatic index | 总平均疏水指数 Grand average of hydropathicity | 跨膜结构域数目 Transmembrane domain number | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
CmPIN1 | MELO3C001206.2 | 135 | 15.15 | 6.69 | 24.33 | 111.93 | 0.795 | 4 | 液泡膜 Tonoplast membrane |
CmPIN2 | MELO3C017414.2 | 623 | 68.44 | 9.22 | 41.57 | 85.47 | -0.012 | 10 | 细胞质膜Cytomembrane |
CmPIN3 | MELO3C017357.2 | 591 | 64.52 | 8.5 | 43.16 | 88.76 | 0.064 | 10 | 细胞质膜Cytomembrane |
CmPIN4 | MELO3C009892.2 | 417 | 46.35 | 9.76 | 48.87 | 118.63 | 0.454 | 11 | 细胞质膜Cytomembrane |
CmPIN5 | MELO3C008726.2 | 402 | 43.62 | 6.23 | 34.38 | 113.26 | 0.501 | 9 | 液泡膜Tonoplast membrane |
CmPIN6 | MELO3C008744.2 | 51 | 5.25 | 6.51 | 30.81 | 139.61 | 1.208 | 0 | 细胞质Cytoplasm |
CmPIN7 | MELO3C031448.2 | 166 | 17.73 | 9.26 | 40.24 | 107.65 | 0.489 | 2 | 叶绿体Chloroplast |
CmPIN8 | MELO3C031243.2 | 51 | 5.19 | 7.98 | 30.81 | 141.57 | 1.275 | 0 | 细胞外基质Extracellular matrix |
CmPIN9 | MELO3C031244.2 | 109 | 12.42 | 7.65 | 27.69 | 102.02 | 0.693 | 3 | 液泡膜Tonoplast membrane |
CmPIN10 | MELO3C013710.2 | 297 | 32.35 | 7.11 | 45.14 | 114.81 | 0.405 | 6 | 内质网Endoplasmic reticulum |
CmPIN11 | MELO3C013711.2 | 428 | 46.24 | 5.02 | 40.85 | 117.78 | 0.576 | 10 | 细胞质膜Cytomembrane |
CmPIN12 | MELO3C017060.2 | 421 | 45.46 | 7.66 | 36.48 | 128.5 | 0.704 | 10 | 液泡膜Tonoplast membrane |
CmPIN13 | MELO3C019102.2 | 611 | 65.37 | 8.75 | 37.4 | 96.73 | 0.265 | 10 | 细胞质膜Cytomembrane |
CmPIN14 | MELO3C025264.2 | 417 | 45.67 | 8.86 | 34.71 | 123.72 | 0.748 | 10 | 细胞质膜Cytomembrane |
CmPIN15 | MELO3C005311.2 | 456 | 50.01 | 5.25 | 33.04 | 123.53 | 0.594 | 10 | 细胞质膜Cytomembrane |
CmPIN16 | MELO3C005326.2 | 636 | 69.50 | 7.15 | 36.26 | 91.42 | 0.111 | 10 | 细胞质膜Cytomembrane |
CmPIN17 | MELO3C018353.2 | 628 | 68.55 | 8.69 | 36.15 | 92.77 | 0.142 | 10 | 细胞质膜Cytomembrane |
CmPIN18 | MELO3C002132.2 | 642 | 70.30 | 9.01 | 36.31 | 83.99 | -0.029 | 10 | 细胞质膜Cytomembrane |
表2 甜瓜CmPINs蛋白质理化性质
Table 2 Physicochemical property of CmPINs proteins in melon
基因 Gene | 基因ID Gene ID | 氨基酸数量 Number of amino acids | 分子量 Molecular weight/kD | 理论等电点 Theoretical pI | 不稳定指数 Instability index | 脂溶指数 Aliphatic index | 总平均疏水指数 Grand average of hydropathicity | 跨膜结构域数目 Transmembrane domain number | 亚细胞定位 Subcellular location |
---|---|---|---|---|---|---|---|---|---|
CmPIN1 | MELO3C001206.2 | 135 | 15.15 | 6.69 | 24.33 | 111.93 | 0.795 | 4 | 液泡膜 Tonoplast membrane |
CmPIN2 | MELO3C017414.2 | 623 | 68.44 | 9.22 | 41.57 | 85.47 | -0.012 | 10 | 细胞质膜Cytomembrane |
CmPIN3 | MELO3C017357.2 | 591 | 64.52 | 8.5 | 43.16 | 88.76 | 0.064 | 10 | 细胞质膜Cytomembrane |
CmPIN4 | MELO3C009892.2 | 417 | 46.35 | 9.76 | 48.87 | 118.63 | 0.454 | 11 | 细胞质膜Cytomembrane |
CmPIN5 | MELO3C008726.2 | 402 | 43.62 | 6.23 | 34.38 | 113.26 | 0.501 | 9 | 液泡膜Tonoplast membrane |
CmPIN6 | MELO3C008744.2 | 51 | 5.25 | 6.51 | 30.81 | 139.61 | 1.208 | 0 | 细胞质Cytoplasm |
CmPIN7 | MELO3C031448.2 | 166 | 17.73 | 9.26 | 40.24 | 107.65 | 0.489 | 2 | 叶绿体Chloroplast |
CmPIN8 | MELO3C031243.2 | 51 | 5.19 | 7.98 | 30.81 | 141.57 | 1.275 | 0 | 细胞外基质Extracellular matrix |
CmPIN9 | MELO3C031244.2 | 109 | 12.42 | 7.65 | 27.69 | 102.02 | 0.693 | 3 | 液泡膜Tonoplast membrane |
CmPIN10 | MELO3C013710.2 | 297 | 32.35 | 7.11 | 45.14 | 114.81 | 0.405 | 6 | 内质网Endoplasmic reticulum |
CmPIN11 | MELO3C013711.2 | 428 | 46.24 | 5.02 | 40.85 | 117.78 | 0.576 | 10 | 细胞质膜Cytomembrane |
CmPIN12 | MELO3C017060.2 | 421 | 45.46 | 7.66 | 36.48 | 128.5 | 0.704 | 10 | 液泡膜Tonoplast membrane |
CmPIN13 | MELO3C019102.2 | 611 | 65.37 | 8.75 | 37.4 | 96.73 | 0.265 | 10 | 细胞质膜Cytomembrane |
CmPIN14 | MELO3C025264.2 | 417 | 45.67 | 8.86 | 34.71 | 123.72 | 0.748 | 10 | 细胞质膜Cytomembrane |
CmPIN15 | MELO3C005311.2 | 456 | 50.01 | 5.25 | 33.04 | 123.53 | 0.594 | 10 | 细胞质膜Cytomembrane |
CmPIN16 | MELO3C005326.2 | 636 | 69.50 | 7.15 | 36.26 | 91.42 | 0.111 | 10 | 细胞质膜Cytomembrane |
CmPIN17 | MELO3C018353.2 | 628 | 68.55 | 8.69 | 36.15 | 92.77 | 0.142 | 10 | 细胞质膜Cytomembrane |
CmPIN18 | MELO3C002132.2 | 642 | 70.30 | 9.01 | 36.31 | 83.99 | -0.029 | 10 | 细胞质膜Cytomembrane |
基因 Gene | α-螺旋 Alpha helix/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% | β-折叠 Beta turn/% |
---|---|---|---|---|
CmPIN1 | 51.11 | 22.22 | 25.19 | 1.48 |
CmPIN2 | 31.14 | 16.05 | 48.48 | 4.33 |
CmPIN3 | 30.12 | 15.91 | 49.24 | 4.74 |
CmPIN4 | 52.52 | 15.35 | 25.66 | 6.47 |
CmPIN5 | 46.02 | 16.67 | 31.59 | 5.72 |
CmPIN6 | 50.98 | 25.49 | 13.73 | 9.80 |
CmPIN7 | 24.70 | 27.71 | 39.76 | 7.83 |
CmPIN8 | 49.02 | 21.57 | 19.61 | 9.80 |
CmPIN9 | 46.79 | 25.69 | 26.61 | 0.92 |
CmPIN10 | 39.39 | 15.49 | 42.76 | 2.36 |
CmPIN11 | 40.42 | 18.93 | 36.45 | 4.21 |
CmPIN12 | 38.00 | 20.19 | 37.29 | 4.51 |
CmPIN13 | 31.75 | 14.24 | 49.75 | 4.26 |
CmPIN14 | 40.29 | 18.94 | 36.69 | 4.08 |
CmPIN15 | 41.45 | 17.11 | 38.38 | 3.07 |
CmPIN16 | 32.08 | 15.41 | 47.80 | 4.72 |
CmPIN17 | 30.89 | 16.40 | 47.13 | 5.57 |
CmPIN18 | 29.75 | 15.42 | 49.53 | 5.30 |
表3 CmPINs蛋白的二级结构
Table 3 Secondary structure of CmPINs proteins
基因 Gene | α-螺旋 Alpha helix/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% | β-折叠 Beta turn/% |
---|---|---|---|---|
CmPIN1 | 51.11 | 22.22 | 25.19 | 1.48 |
CmPIN2 | 31.14 | 16.05 | 48.48 | 4.33 |
CmPIN3 | 30.12 | 15.91 | 49.24 | 4.74 |
CmPIN4 | 52.52 | 15.35 | 25.66 | 6.47 |
CmPIN5 | 46.02 | 16.67 | 31.59 | 5.72 |
CmPIN6 | 50.98 | 25.49 | 13.73 | 9.80 |
CmPIN7 | 24.70 | 27.71 | 39.76 | 7.83 |
CmPIN8 | 49.02 | 21.57 | 19.61 | 9.80 |
CmPIN9 | 46.79 | 25.69 | 26.61 | 0.92 |
CmPIN10 | 39.39 | 15.49 | 42.76 | 2.36 |
CmPIN11 | 40.42 | 18.93 | 36.45 | 4.21 |
CmPIN12 | 38.00 | 20.19 | 37.29 | 4.51 |
CmPIN13 | 31.75 | 14.24 | 49.75 | 4.26 |
CmPIN14 | 40.29 | 18.94 | 36.69 | 4.08 |
CmPIN15 | 41.45 | 17.11 | 38.38 | 3.07 |
CmPIN16 | 32.08 | 15.41 | 47.80 | 4.72 |
CmPIN17 | 30.89 | 16.40 | 47.13 | 5.57 |
CmPIN18 | 29.75 | 15.42 | 49.53 | 5.30 |
基因 Gene | 生长素相关 Auxin related | 赤霉素相关 Gibberellin related | 脱落酸相关 Abscisic acid related | 水杨酸相关 Salicylic acid related | 茉莉酸甲酯相关 Methyl jasmonate related | 光信号相关 Circadian- related | 分生组织相关 Meristem- related | 防御和应激相关 Defense related to stress | 低温反应相关 Low temperature related | 干旱诱导相关 Drought induced-related |
---|---|---|---|---|---|---|---|---|---|---|
CmPIN1 | 1 | - | 3 | - | 2 | 4 | 3 | 1 | - | - |
CmPIN2 | - | - | 3 | - | 4 | 3 | 1 | - | 1 | - |
CmPIN3 | 1 | - | 1 | - | - | 6 | - | 1 | - | 1 |
CmPIN4 | - | 1 | 2 | 1 | 2 | 3 | 2 | - | - | 1 |
CmPIN5 | - | 1 | 1 | - | 2 | 5 | - | - | - | - |
CmPIN6 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN7 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN8 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN9 | 1 | - | 3 | - | 2 | 4 | 3 | 1 | - | - |
CmPIN10 | 1 | - | 3 | 3 | 2 | 5 | 1 | - | - | 1 |
CmPIN11 | 1 | - | 5 | 1 | 2 | - | - | 1 | - | - |
CmPIN12 | 1 | 1 | - | 1 | 4 | 7 | - | 2 | - | 1 |
CmPIN13 | - | - | 3 | - | 2 | 3 | - | - | - | - |
CmPIN14 | 1 | 1 | 1 | - | 4 | 4 | - | - | - | - |
CmPIN15 | - | - | 1 | - | 4 | 5 | - | 1 | 1 | - |
CmPIN16 | 1 | 1 | 2 | 1 | 4 | 2 | 1 | - | 2 | - |
CmPIN17 | 1 | 1 | 2 | - | 2 | 7 | - | 2 | - | - |
CmPIN18 | - | 1 | 4 | - | 6 | 2 | 1 | 1 | - | - |
总计Total | 9 | 7 | 34 | 7 | 42 | 63 | 12 | 19 | 4 | 4 |
表4 CmPINs基因启动子的顺式作用元件
Table 4 Predicted cis-elements in the promoter of the CmPINs genes
基因 Gene | 生长素相关 Auxin related | 赤霉素相关 Gibberellin related | 脱落酸相关 Abscisic acid related | 水杨酸相关 Salicylic acid related | 茉莉酸甲酯相关 Methyl jasmonate related | 光信号相关 Circadian- related | 分生组织相关 Meristem- related | 防御和应激相关 Defense related to stress | 低温反应相关 Low temperature related | 干旱诱导相关 Drought induced-related |
---|---|---|---|---|---|---|---|---|---|---|
CmPIN1 | 1 | - | 3 | - | 2 | 4 | 3 | 1 | - | - |
CmPIN2 | - | - | 3 | - | 4 | 3 | 1 | - | 1 | - |
CmPIN3 | 1 | - | 1 | - | - | 6 | - | 1 | - | 1 |
CmPIN4 | - | 1 | 2 | 1 | 2 | 3 | 2 | - | - | 1 |
CmPIN5 | - | 1 | 1 | - | 2 | 5 | - | - | - | - |
CmPIN6 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN7 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN8 | - | - | - | - | - | 1 | - | 3 | - | - |
CmPIN9 | 1 | - | 3 | - | 2 | 4 | 3 | 1 | - | - |
CmPIN10 | 1 | - | 3 | 3 | 2 | 5 | 1 | - | - | 1 |
CmPIN11 | 1 | - | 5 | 1 | 2 | - | - | 1 | - | - |
CmPIN12 | 1 | 1 | - | 1 | 4 | 7 | - | 2 | - | 1 |
CmPIN13 | - | - | 3 | - | 2 | 3 | - | - | - | - |
CmPIN14 | 1 | 1 | 1 | - | 4 | 4 | - | - | - | - |
CmPIN15 | - | - | 1 | - | 4 | 5 | - | 1 | 1 | - |
CmPIN16 | 1 | 1 | 2 | 1 | 4 | 2 | 1 | - | 2 | - |
CmPIN17 | 1 | 1 | 2 | - | 2 | 7 | - | 2 | - | - |
CmPIN18 | - | 1 | 4 | - | 6 | 2 | 1 | 1 | - | - |
总计Total | 9 | 7 | 34 | 7 | 42 | 63 | 12 | 19 | 4 | 4 |
图6 不同生长素抑制剂对CmPIN2、CmPIN3、CmPIN13、CmPIN18基因表达的影响 误差线为标准误,不同小写字母表示不同处理差异达到显著性水平(P<0.05)
Fig. 6 Effects of auxin inhibitors on the CmPIN2, CmPIN,CmPIN13, and CmPIN18 genes expression Error bars are the standard errors(SE). Different lowercase letters indicate significant differences(P < 0.05)
[1] | 潘建伟, 张晨燕, 周哉材. 生长素极性输出载体PIN的研究进展[J]. 浙江师范大学学报: 自然科学版, 2018, 41(4): 436-443. |
Pan JW, Zhang CY, Zhou ZC. Research progress of auxin efflux transporer PIN proteins[J]. J Zhejiang Norm Univ Nat Sci, 2018, 41(4): 436-443. | |
[2] |
Morris DA. Transmembrane auxin carrier systems—dynamic regulators of polar auxin transport[J]. Plant Growth Regul, 2000, 32(2/3): 161-172.
doi: 10.1023/A:1010701527848 URL |
[3] |
Muday GK, DeLong A. Polar auxin transport: controlling where and how much[J]. Trends Plant Sci, 2001, 6(11): 535-542.
doi: 10.1016/s1360-1385(01)02101-x pmid: 11701382 |
[4] |
Friml J, Palme K. Polar auxin transport—old questions and new concepts?[J]. Plant Mol Biol, 2002, 49(3/4): 273-284.
doi: 10.1023/A:1015248926412 URL |
[5] | 刘士平, 王璐, 王继荣, 等. 高等植物的PIN基因家族[J]. 植物生理学通讯, 2009, 45(8): 833-841. |
Liu SP, Wang L, Wang JR, et al. PIN gene family in higher plants[J]. Plant Physiol Commun, 2009, 45(8): 833-841. | |
[6] |
Wisniewska J, Xu J, Seifertová D, et al. Polar PIN localization directs auxin flow in plants[J]. Science, 2006, 312(5775): 883.
doi: 10.1126/science.1121356 pmid: 16601151 |
[7] |
Vieten A, Sauer M, Brewer PB, et al. Molecular and cellular aspects of auxin-transport-mediated development[J]. Trends Plant Sci, 2007, 12(4): 160-168.
pmid: 17369077 |
[8] |
Krecek P, Skupa P, Libus J, et al. The PIN-FORMED(PIN)protein family of auxin transporters[J]. Genome Biol, 2009, 10(12): 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306 |
[9] |
Petrásek J, Mravec J, Bouchard R, et al. PIN proteins perform a rate-limiting function in cellular auxin efflux[J]. Science, 2006, 312(5775): 914-918.
doi: 10.1126/science.1123542 pmid: 16601150 |
[10] |
Blakeslee JJ, Bandyopadhyay A, Lee OR, et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis[J]. Plant Cell, 2007, 19(1): 131-147.
doi: 10.1105/tpc.106.040782 pmid: 17237354 |
[11] |
Yue RQ, Tie SG, Sun T, et al. Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize(Zea mays L.) under various abiotic stresses[J]. PLoS One, 2015, 10(3): e0118751.
doi: 10.1371/journal.pone.0118751 URL |
[12] |
Xu WF, Jia LG, Baluška F, et al. PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion[J]. J Exp Bot, 2012, 63(17): 6105-6114.
doi: 10.1093/jxb/ers259 URL |
[13] |
Hanzawa T, Shibasaki K, Numata T, et al. Cellular auxin homeostasis under high temperature is regulated through a sorting NEXIN1-dependent endosomal trafficking pathway[J]. Plant Cell, 2013, 25(9): 3424-3433.
doi: 10.1105/tpc.113.115881 URL |
[14] |
Fei QH, Wei SD, Zhou ZY, et al. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis[J]. Plant Cell Rep, 2017, 36(9): 1507-1518.
doi: 10.1007/s00299-017-2171-7 URL |
[15] | 鲍亚宁. 高温下亚麻纤维发育相关转录组及生长素信号相关基因的研究[D]. 武汉: 华中农业大学, 2020. |
Bao YN. Transcriptome analysis of fiber development and identification of auxin signaling related genes in flax(Linum usitatissimum L.)under high temperature[D]. Wuhan: Huazhong Agricultural University, 2020. | |
[16] |
冯芳玖, 李静婷, 郭丹凤, 等. 年份气温差异对野生型和转OsPIN1a基因水稻胚乳发育及种子萌发的影响[J]. 核农学报, 2015, 29(11): 2198-2207.
doi: 10.11869/j.issn.100-8551.2015.11.2198 |
Feng FJ, Li JT, Guo DF, et al. Effects of different air temperature in different cropping years on development of seed endosperm and germination characteristics in over-expression OsPIN1a and wild type rice[J]. J Nucl Agric Sci, 2015, 29(11): 2198-2207. | |
[17] |
洪天澍, 海英, 恩和巴雅尔, 等. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1117 |
Hong TS, Hai Y, En H, et al. Analysis of expression characteristics of CmABCG8 gene in Cucumis melo L[J]. Biotechnol Bull, 2022, 38(7): 178-185. | |
[18] | 王志丹. 中国甜瓜产业经济发展研究[D]. 北京: 中国农业科学院, 2014. |
Wang ZD. Study on the development of muskmelon industry economy in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. | |
[19] | 周永海, 杨丽萍, 马荣雪, 等. 外源褪黑素对高温胁迫下甜瓜幼苗抗氧化特性及其相关基因表达的影响[J]. 西北农业学报, 2020, 29(5): 745-751. |
Zhou YH, Yang LP, Ma RX, et al. Effects of exogenous melatonin on antioxidant properties and related gene expression in melon seedlings under high temperature stress[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(5): 745-751. | |
[20] |
Paponov IA, Teale WD, Trebar M, et al. The PIN auxin efflux facilitators: evolutionary and functional perspectives[J]. Trends Plant Sci, 2005, 10(4): 170-177.
doi: 10.1016/j.tplants.2005.02.009 pmid: 15817418 |
[21] |
Pattison RJ, Catalá C. Evaluating auxin distribution in tomato(Solanum lycopersicum)through an analysis of the PIN and AUX/LAX gene families[J]. Plant J, 2012, 70(4): 585-598.
doi: 10.1111/tpj.2012.70.issue-4 URL |
[22] |
He P, Zhao P, Wang LM, et al. The PIN gene family in cotton(Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses[J]. BMC Genomics, 2017, 18(1): 507.
doi: 10.1186/s12864-017-3901-5 URL |
[23] |
Wang YQ, Chai CL, Valliyodan B, et al. Genome-wide analysis and expression profiling of the PIN auxin transporter gene family in soybean(Glycine max)[J]. BMC Genomics, 2015, 16: 951.
doi: 10.1186/s12864-015-2149-1 URL |
[24] |
Kumar M, Kherawat BS, Dey P, et al. Genome-wide identification and characterization of PIN-FORMED(PIN)gene family reveals role in developmental and various stress conditions in Triticum aestivum L[J]. Int J Mol Sci, 2021, 22(14): 7396.
doi: 10.3390/ijms22147396 URL |
[25] |
Zhang CH, Dong WQ, Huang ZA, et al. Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper(Capsicum annuum L.) under various abiotic stresses and hormone treatments[J]. Genome, 2018, 61(2): 121-130.
doi: 10.1139/gen-2017-0163 URL |
[26] |
高堃, 华营鹏, 宋海星, 等. 甘蓝型油菜PIN家族基因的鉴定与生物信息学分析[J]. 作物学报, 2018, 44(9): 1334-1346.
doi: 10.3724/SP.J.1006.2018.01334 |
Gao K, Hua YP, Song HX, et al. Identification and bioinformatics analysis of the PIN family gene in Brassica napus[J]. Acta Agron Sin, 2018, 44(9): 1334-1346.
doi: 10.3724/SP.J.1006.2018.01334 URL |
|
[27] |
Yu CL, Dong WQ, Zhan YH, et al. Genome-wide identification and expression analysis of ClLAX, ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting[J]. BMC Genet, 2017, 18(1): 33.
doi: 10.1186/s12863-017-0500-z URL |
[28] | Lehmann J, Atzorn R, Brückner C, et al. Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments[J]. Planta, 1995, 197(1): 156-162. |
[29] |
Ji XM, Dong BD, Shiran B, et al. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in Cereals1[J]. Plant Physiol, 2011, 156(2): 647-662.
doi: 10.1104/pp.111.176164 pmid: 21502188 |
[30] | 彭舒, 黄真池, 欧阳乐军, 等. 植物基因工程中人工启动子的研究进展[J]. 植物生理学报, 2011, 47(2): 141-146. |
Peng S, Huang ZC, Ouyang LJ, et al. Research progress of artificial promoter in plant genetic engineering[J]. Plant Physiol J, 2011, 47(2): 141-146. | |
[31] | 曾晓玲, 赵昶灵, 文国松, 等. 启动子结构、功能预测和验证方法的研究进展[J]. 分子植物育种, 2018, 16(12): 3915-3925. |
Zeng XL, Zhao CL, Wen GS, et al. Research advances in prediction and validation methods for structures and functions of promoters[J]. Mol Plant Breed, 2018, 16(12): 3915-3925. | |
[32] |
Du H, Liu HB, Xiong LZ. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice[J]. Front Plant Sci, 2013, 4: 397.
doi: 10.3389/fpls.2013.00397 pmid: 24130566 |
[33] |
Song ZP, Fan NB, Jiao GZ, et al. Overexpression of OsPT8 increases auxin content and enhances tolerance to high-temperature stress in Nicotiana tabacum[J]. Genes, 2019, 10(10): 809.
doi: 10.3390/genes10100809 URL |
[34] | 位少栋. 生长素及乙烯调控不同温度下的拟南芥根系统发育[D]. 兰州: 兰州大学, 2015. |
Wei SD. Auxin and ethylene regulate Arabidopsis root development under different temperature[D]. Lanzhou: Lanzhou University, 2015. |
[1] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[2] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[3] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[4] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[5] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[6] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[7] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[8] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[9] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[10] | 杨敏, 龙雨青, 曾娟, 曾梅, 周新茹, 王玲, 付学森, 周日宝, 刘湘丹. 灰毡毛忍冬UGTPg17、UGTPg36基因克隆及功能研究[J]. 生物技术通报, 2023, 39(10): 256-267. |
[11] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[12] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[13] | 洪天澍, 海英, 恩和巴雅尔, 高峰. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185. |
[14] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
[15] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||