生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 174-181.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0556
荣玉萍1(), 唐彬1, 李鹏1, 章洁琼2, 陈庆富1, 朱丽伟1, 邓娇1, 黄娟1()
收稿日期:
2020-05-09
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
荣玉萍,女,硕士研究生,研究方向:荞麦生物信息学;E-mail: 基金资助:
RONG Yu-ping1(), TANG Bin1, LI Peng1, ZHANG Jie-qiong2, CHEN Qing-fu1, ZHU Li-wei1, DENG Jiao1, HUANG Juan1()
Received:
2020-05-09
Published:
2021-01-26
Online:
2021-01-15
摘要:
植物特有的NAC转录因子参与植物生长发育和逆境响应。研究苦荞中NAC转录因子在非生物胁迫中的应答,为阐明基因功能提供理论依据。以苦荞为试验材料,克隆一个NAC家族基因,对其进行生物信息学分析。通过荧光定量PCR技术检测该基因在干旱、低温、盐、茉莉酸甲酯、脱落酸和赤霉素胁迫时的响应情况。该基因编码272个氨基酸,将其命名为FtNAC17,GenBank登录号为MT641452。基因结构分析表明,FtNAC17由2个外显子和1个内含子组成。氨基酸序列多重比对和进化关系分析表明,FtNAC17蛋白与拟南芥ANAC002亲缘关系最近,属于NAC转录因子家族中同一亚组。FtNAC17对干旱、低温、盐等非生物胁迫均有不同程度的响应。
荣玉萍, 唐彬, 李鹏, 章洁琼, 陈庆富, 朱丽伟, 邓娇, 黄娟. 苦荞NAC转录因子FtNAC17的鉴定及表达分析[J]. 生物技术通报, 2021, 37(1): 174-181.
RONG Yu-ping, TANG Bin, LI Peng, ZHANG Jie-qiong, CHEN Qing-fu, ZHU Li-wei, DENG Jiao, HUANG Juan. Identification and Expression of NAC Transcription Factor FtNAC17 in Tartary Buckwheat[J]. Biotechnology Bulletin, 2021, 37(1): 174-181.
基因名称 | 编码区 长度 | 氨基酸 数目 | 分子量/kD | 理论等 电点 | 脂肪族氨基酸指数 | 蛋白质疏水性 |
---|---|---|---|---|---|---|
NAC17 | 816 | 272 | 30.77 | 7.05 | 63.12 | -0.584 |
表1 FtNAC17蛋白的理化性质
基因名称 | 编码区 长度 | 氨基酸 数目 | 分子量/kD | 理论等 电点 | 脂肪族氨基酸指数 | 蛋白质疏水性 |
---|---|---|---|---|---|---|
NAC17 | 816 | 272 | 30.77 | 7.05 | 63.12 | -0.584 |
[1] |
Zhu K. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324.
URL pmid: 27716505 |
[2] | Erpen L, Devi HS, Grosser JW, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. The Plant Cell, 2017,132(1):1-25. |
[3] | Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000,290(5499):2105-2110. |
[4] |
Hisako O, Kouji S, Koji D, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research, 2003,10(6):239-247.
URL pmid: 15029955 |
[5] | Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012,1819(2):97-103. |
[6] | 杨映雪. 非生物胁迫对植物的影响及植物的抵抗机制[J]. 生物技术世界, 2013(9):34. |
Yang YX. Effects of abiotic stresses on plants and mechanisms of plant resistance[J]. Biotech World, 2013(9):34. | |
[7] | Gao F, Xiong A, Peng R, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants[J]. Plant Cell Tissue and Organ Culture, 2010,100(3):255-262. |
[8] | Yuan P, Yang T, Poovaiah BW. Calcium signaling-mediated plant response to cold stress[J]. International Journal of Molecular Sciences, 2018,19(12):3896. |
[9] | Kazemi-Shahandashti SS, Maali-Amiri R. Global insights of protein responses to cold stress in plants:Signaling, defence, and degradation[J]. Journal of Plant Physiology, 2018,226:123. |
[10] |
Jiang Z, Zhu S, Ye R, et al. Relationship between NaCl- and H2O2-induced cytosolic Ca 2+ increases in response to stress in Arabidopsis [J]. PLoS One, 2013,8(10):e76130.
doi: 10.1371/journal.pone.0076130 URL pmid: 24124535 |
[11] | Wang Y, Cao SJ, Guan CJ, et al. Overexpressing the NAC transcription factor LpNAC13 from Lilium pumilum in tobacco negatively regulates the drought response and positively regulates the salt response[J]. Plant Physiology and Biochemistry, 2020,149:96-110. |
[12] | 秦培友. 我国主要荞麦品种资源品质评价及加工处理对荞麦成分和活性的影响[D]. 北京:中国农业科学院, 2012. |
Qin PY. Quality evaluation of Chinese main buckwheat cultivars and effect of processing on the components and health-relevant functionlity of buckwheat[D]. Beijing:Chinese Academy of Agricultural Sciences, 2012. | |
[13] | 黄娟, 邓娇, 陈庆富. 荞麦根的转录组学分析及黄酮合成基因的鉴定[J]. 中国农业科技导报, 2017,19(2):9-19. |
Huang J, Deng J, Chen QF. Transcriptome analysis of fagopyrum root and identification of genes involved in flavonoid biosynjournal[J]. Journal of Agricultural Science and Technology, 2017,19(2):9-19. | |
[14] | 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报:自然科学版, 2018,36(3):1-7. |
Chen QF. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. Journal of Guizhou Normal University:Natural Sciences, 2018,36(3):1-7. | |
[15] | 李玲, 闫旭宇, 王延峰. 荞麦文献分析及相关进展研究[J]. 科技通报, 2020,36(1):1-7. |
Li L, Yan XY, Wang YF. Analysis of literature and related research progress of buckwheat[J]. Bulletin of Science and Technology, 2020,36(1):1-7. | |
[16] | Zhang J, Li X, Ma B, et al. The tartary buckwheat genome provides insights into rutin biosynjournal and abiotic stress tolerance[J]. Molecular Plant, 2017,10(9):1224-1237. |
[17] | 荣玉萍, 张文香, 邓娇, 等. 苦荞NAC基因家族的生物信息学分析[J]. 湖南农业大学学报:自然科学版, 2019,45(3):273-280. |
Rong YP, Zhang WX, Deng J, et al. Bioinformatics analysis of NAC gene family in tartary buckwheat[J]. Journal of Hunan Agricultural University:Natural Sciences, 2019,45(3):273-280. | |
[18] |
Liu Y, Ma T, Sun J, et al. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat(Fagopyrum tataricum)[J]. BMC Genomics, 2019,20:113.
doi: 10.1186/s12864-019-5500-0 URL pmid: 30727951 |
[19] | 黄娟, 荣玉萍, 孟子烨, 等. 苦荞转录因子FtNAC15基因的克隆及表达分析[J]. 江西农业大学学报, 2019,41(6):1183-1191. |
Huang J, Rong YP, Meng ZY, et al. Cloning and expression of FtNAC15 transcription factor in fagopyrum tataricum[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019,41(6):1183-1191. | |
[20] | Deng Y, Zhao X, Xiao H, et al. Cloning, characterization, and expression analysis of eight stress-related NAC genes in tartary buckwheat[J]. The Crop Science Society of America, 2019,59(1):266-279. |
[21] | 陈蕾太, 孙爱清, 杨敏, 等. 逆境条件下小麦种子活力与种子萌发相关酶活性及其基因表达的关系[J]. 应用生态学报, 2017,28(2):609-619. |
Chen LT, Sun AM, Yang M, et al. Relationships of wheat seed vigor with enzyme activities and gene expression related to seed germination under stress conditions[J]. Chinese Journal of Applied Ecology, 2017,28(2):609-619. | |
[22] | 李萌. 玉米低温响应转录组及相关基因功能分析[D]. 泰安:山东农业大学, 2018. |
Li M. Analysis of maize transcriptome response to chiling stress and functional study of related genes[J]. Taian:Shandong Agricultural University, 2018. | |
[23] | 张烈, 杜锦, 王敏, 等. 氯化钠胁迫对玉米幼苗代谢的影响[J]. 杂粮作物, 2009,29(5):328-331. |
Zhang L, Du M, Wang M, et al. Influence of NaCl stress on the metabolism of maize seedlings[J]. Horticulture & Seed, 2009,29(5):328-331. | |
[24] | 雒晓鹏, 朱冬寅, 黄云吉, 等. 茉莉酸甲酯对芽期苦荞黄酮积累及相关基因表达的影响[J]. 基因组学与应用生物学, 2015,34(5):1040-1046. |
Luo XP, Zhu DY, Hang YJ, et al. Effects of methyl jasmonate accumulation of flavonoids and related gene expression of buckwheat sprouts[J]. Genomics and Applied Biology, 2015,34(5):1040-1046. | |
[25] | 秦利军, 冯所鸿, 杜致辉, 等. 激素处理对NtQPT干涉表达烟草种子萌发及生长影响研究[J]. 种子, 2018,37(8):16-22. |
Qin LJ, Feng SH, Du ZH, et al. Study on effects of hormone treatment on the germination and growth of tobacco seeds with NtQPTInterference[J]. Seed, 2018,37(8):16-22. | |
[26] | 凌娜, 侯江涛. 赤霉素浸种处理对盐胁迫下辣椒种子萌发的影响[J]. 商丘职业技术学院学报, 2017,16(2):106-108. |
Ling N, Hou JT. Effects of gibberellin on seed germination of pepper seedling under salt stress[J]. Journal of Shangqiu Vocational and Technical College, 2017,16(2):106-108. | |
[27] | 黄娟, 邓娇, 梁成刚, 等. 3个荞麦物种中种子蛋白相关基因的表达分析[J]. 贵州师范大学学报:自然科学版, 2017,35(4):46-55. |
Huang J, Deng J, Liang CG, et al. Expression analyses of seed protein related genes in 3 buckwheat species(Fagopyrum)[J]. Journal of Guizhou Normal University:Natural Sciences, 2017,35(4):46-55. | |
[28] | 王洋, 柏锡. 大豆NAC基因家族生物信息学分析[J]. 大豆科学, 2014,33(3):325-333. |
Wang Y, Bai X. Bioinformatics analysis of NAC gene family in Glycine max L.[J]. Soybean Science, 2014,33(3):325-333. | |
[29] | 黎和勇, 胡尚连, 曹颖, 等. 毛竹NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学, 2015,34(8):1769-1777. |
Li HY, Hu SL, Cao Y, et al. Bioinformatics analysis of NAC gene family in moso bamboo[J]. Genomics and Applied Biology, 2015,34(8):1769-1777. | |
[30] | Wu YR, Deng ZY, Lai JB, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Research, 2009,19(11):1279-1290. |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[3] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[4] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[5] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[6] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[7] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[8] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[9] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[10] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[11] | 梅欢, 李玥, 刘可蒙, 刘吉华. 小檗碱桥酶高效原核表达及生物合成l-SLR的研究[J]. 生物技术通报, 2023, 39(7): 277-287. |
[12] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[13] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[14] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[15] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||