生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 145-154.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1060
徐琨1(), 杨爱江1,2,3(), 胡霞1,2,3, 邹海洮1, 李彬1, 刘吉1
收稿日期:
2020-08-21
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
徐琨,女,硕士研究生,研究方向:环境污染与控制;E-mail:基金资助:
XU Kun1(), YANG Ai-jiang1,2,3(), HU Xia1,2,3, ZOU Hai-tao1, LI Bin1, LIU Ji1
Received:
2020-08-21
Published:
2021-04-26
Online:
2021-05-13
摘要:
研究在不同Sb浓度胁迫下,斑马鱼各组织中Sb的积累以及各类酶活性及含量变化。以斑马鱼为受试对象,暴露于Sb溶液(0、13.26、26.53、39.79 mg/L)中14 d后,测定各组织Sb积累量、SOD、CAT活性及GSH、MDA含量。结果显示Sb在各组织中积累顺序为肝脏>鳃>肌肉>脑,且随着Sb胁迫浓度增大而逐渐增多。随着Sb胁迫浓度增高,肝脏、脑、鳃、肌肉SOD活性呈现不同变化趋势;CAT活性及GSH含量均呈先上升后下降的趋势,表现为低浓度促进,高浓度抑制;MDA含量呈逐渐升高的趋势。综上表明,Sb可在斑马鱼不同组织积累,激活机体抗氧化防御系统,并使机体产生脂质过氧化。
徐琨, 杨爱江, 胡霞, 邹海洮, 李彬, 刘吉. 锑在斑马鱼不同组织中的积累及其对抗氧化系统的影响[J]. 生物技术通报, 2021, 37(4): 145-154.
XU Kun, YANG Ai-jiang, HU Xia, ZOU Hai-tao, LI Bin, LIU Ji. Antimony Accumulation and Its Effect on Antioxidation System in Different Tissues of Danio rerio[J]. Biotechnology Bulletin, 2021, 37(4): 145-154.
图1 对照组和不同浓度锑处理组中斑马鱼肝、脑、鳃、肌肉中总锑含量 对照组浓度ND(未检测出),不同字母表示各组间差异显著(P<0.05),(n=3)下同
Fig.1 Total antimony content in liver, brain, gill and muscle of zebrafish under different concentrations of antimony treatment The concentration in the control group was ND (not detected), and different letters indicate significant differences between the groups (P<0.05),the same below(n=3)
[1] |
Von Uexkull O, Skerfving S, Doyle R, et al. Antimony in brake pads - a carcinogenic component?[J]. Journal of Cleaner Production, 2005,13(1):19-31.
doi: 10.1016/j.jclepro.2003.10.008 URL |
[2] |
Babula P, Adam V, Opatrilova R, et al. Uncommon heavy metals, metalloids and their plant toxicity:A review[J]. Environmental Chemistry Letters, 2008,6(4):189-213.
doi: 10.1007/s10311-008-0159-9 URL |
[3] |
Smichowski P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols[J]. Talanta, 2008,75(1):2-14.
doi: 10.1016/j.talanta.2007.11.005 pmid: 18371839 |
[4] | Sundar S, Chakravarty J. Antimony toxicity[J]. International Journal of Environmental Research & Public Health, 2010,7(12):4267-4277. |
[5] | 丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013,40(3):846-858. |
Ding JH, Yang YH, Deng F, et al. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 2013,40(3):846-858. | |
[6] | He M, Wang X, Wu F, et al. Antimony pollution in China[J] Science of the Total Environment, 2012(421-422):41-50. |
[7] | 朱静, 吴丰昌, 邓秋静, 等. 湖南锡矿山周边水体的环境特征[J]. 环境科学学报, 2009,29(3):655-661. |
Zhu J, Wu FC, Deng QJ, et al. Environmental characteristics of water near the Xikuangshan antimony mine, HunanProvince[J]. Acta Scientiae Circumstantiae, 2009,29(3):655-661. | |
[8] |
Hiller E, Lalinska B, Chovan M, et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 2012,27(3):598-614.
doi: 10.1016/j.apgeochem.2011.12.005 URL |
[9] | Javed M, Usmani N. Accumulation of heavy metals in fishes:A human health concern[J]. International Journal on Environmental Sciences, 2011,2(2):659-670. |
[10] | Kalay M, Canli M. Elimination of essential(Cu, Zn)and non-essential(Cd, Pb)metals from tissues of a freshwater fish Tilapia zilli[J]. Turkish Journal of Zoology, 2000,24(4):429-436. |
[11] |
Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms[J]. Marine Pollution Bulletin, 2001,42(8):656-666.
doi: 10.1016/S0025-326X(01)00060-1 URL |
[12] | Cao L, Huang W, Liu J, et al. Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure[J]. Comparative Biochemistry & Physiology Part C Toxicology & Pharmacology, 2010,151(3):386-392. |
[13] | 岳鑫, 杨爱江, 徐鹏, 等. 锑胁迫对斑马鱼酶活性的影响研究[J]. 生物技术通报, 2019,35(6):107-113. |
Yue X, Yang A, Xu P, et al. Effect of antimony on the enzyme activity of Danio rerio[J]. Biotechnology Bulletin, 2019,35(6):107-113. | |
[14] |
Pretto A, Loro VL, Silva VM, et al. Exposure to sublethal concentr-ations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard[J]. Bulletin of Environmental Contamination and Toxicology, 2014,92(4):399-403.
doi: 10.1007/s00128-014-1215-8 URL |
[15] |
Huang W, Cao L, Liu J, et al. Short-term mercury exposure affecting the development and antioxidant biomarkers of Japanese flounder embryos and larvae[J]. Ecotoxicology and Environmental Safety, 2010,73(8):1875-1883.
doi: 10.1016/j.ecoenv.2010.08.012 pmid: 20833429 |
[16] | Geng F, Hu N, Zheng JF, et al. Evaluation of the toxic effect on zebrafish(Danio rerio)exposed to uranium mill tailings leaching solution[J]. Journal of Radioanalytical & Nuclear Chemistry, 2012,292(1):453-463. |
[17] | 岳鑫. 锑对斑马鱼的急性毒性效应及抗性研究[D]. 贵阳:贵州大学, 2019. |
Yue X. Study on the acute toxicity and resistance of antimony in Danio rerio[D]. Guiyang:Guizhou University, 2019. | |
[18] | 方展强, 杨丽华. 重金属在鲫幼鱼组织中的积累与分布[J]. 水利渔业, 2004,24(6):23-26. |
Fang ZQ, Yang LH. Accumulation and distribution of heavy metals in carassius auratus larva tissues[J]. Journal of Hydroecology, 2004,24(6):23-26. | |
[19] |
Visnji-jeftic Z, Jaric I, Jovanovic L, et al. Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad(Alosa immaculata Bennet 1835)from the Danube River(Serbia)[J]. Microchemical Journal, 2010,95(2):341-344.
doi: 10.1016/j.microc.2010.02.004 URL |
[20] |
Pagenkopf GK. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness[J]. Environmental Science & Technology, 1983,17(6):342-347.
doi: 10.1021/es00112a007 URL |
[21] |
Ciji PP, Nandan SB. Toxicity of copper and zinc to Puntius parrah(Day, 1865)[J]. Marine Environmental Research, 2014,93:38-46.
doi: 10.1016/j.marenvres.2013.11.006 pmid: 24332362 |
[22] |
El-Moselhy KM, Othman AI, Abd El-Azem H, et al. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt[J]. Egyptian Journal of Basic and Applied Sciences, 2014,1(2):97-105.
doi: 10.1016/j.ejbas.2014.06.001 URL |
[23] |
Tuncsoy M, Duran S, Ay O, et al. Accumulation of copper in gill, liver, spleen, kidney and muscle tissues of Clarias gariepinus exposed to the metal singly and in mixture with chitosan[J]. Bulletin of Environmental Contamination and Toxicology, 2016,97(4):486-489.
doi: 10.1007/s00128-016-1900-x URL |
[24] | 李华. 重金属在淡水鱼体内的蓄积、排出机理及其金属硫蛋白的研究[D]. 哈尔滨:东北农业大学, 2013. |
Li H. The research of heavy metal accumulation and discharge mechanism in freshwater fish and its metallothionein[D]. Harbin:Northeast Agricultural University, 2013. | |
[25] |
Abel PD, Papoutsoglou SE. Lethal toxicity of cadmium to Cyprinus carpio and Tilapia aurea[J]. Bulletin of Environmental Contamination and Toxicology, 1986,37(1):382-386.
doi: 10.1007/BF01607777 URL |
[26] |
Zhang Y, Huang D, Wang Y, et al. Heavy metal accumulation and tissue damage in goldfish Carassius auratus[J]. Bulletin of Environmental Contamination and Toxicology, 2005,75(6):1191-1199.
doi: 10.1007/s00128-005-0875-9 URL |
[27] | 孔强, 赵岩, 付荣恕. 3种重金属联合对孔雀鱼肝脏抗氧化酶系统的影响[J]. 供水技术, 2010,4(6):10-13. |
Kong Q, Zhao Y, Fu R. Joint effects of Cu2+, Cd2+and Cr6+on the antioxidant enzymes of Poecilia reticulate[J]. Water Technology, 2010,4(6):10-13. | |
[28] |
Ruas CB, Carvalho CD, De Araujo HS, et al. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river[J]. Ecotoxicology and Environmental Safety, 2008,71(1):86-93.
doi: 10.1016/j.ecoenv.2007.08.018 URL |
[29] | Aytekin T, Firat O, Cogun HY, et al. Effects of metal mixtures(Cd+Cu+Cr+Pb+Zn)on antioxidant systems and lipid peroxidation in tissues of freshwater fish, Oreochromis niloticus[J]. Fresenius Environmental Bulletin, 2017,26(8):4963-4968. |
[30] | Chapman PM. Defining hormesis:comments on calabrese and Baldwin.[J]. Human & Experimental Toxicology, 2002,21(2):113-114. |
[31] | Kappus H. Lipid Peroxidation:mechanisms, analysis, enzymology and biological relevance[M]//Sies H. Oxidative Stress. London:Academic Press, 1985: 273-310. |
[32] |
Hou L, Yang Y, Shu H, et al. Changes in histopathology, enzyme activities, and the expression of relevant genes in zebrafish(Danio rerio)following long-term exposure to environmental levels of Thallium[J]. Bulletin of Environmental Contamination and Toxicology, 2017,99(5):574-581.
doi: 10.1007/s00128-017-2176-5 URL |
[33] |
Verlecar XN, Jena KB, Chainy GBN. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature[J]. Chemico-Biological Interactions, 2007,167(3):219-226.
doi: 10.1016/j.cbi.2007.01.018 URL |
[34] |
Asagba SO, Eriyamremu GE, Igberaese ME. Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish(Clarias gariepinus)[J]. Fish Physiology and Biochemistry, 2008,34(1):61-69.
doi: 10.1007/s10695-007-9147-4 URL |
[35] |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010,48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 URL |
[36] |
Atli G, Canli M. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal(Cd, Cu, Cr, Zn, Fe)exposures[J]. Ecotoxicology and Environmental Safety, 2010,73(8):1884-1889.
doi: 10.1016/j.ecoenv.2010.09.005 URL |
[37] | Xie D, Li Y, Liu Z, et al. Inhibitory effect of cadmium exposure on digestive activity, antioxidant capacity and immune defense in the intestine of yellow catfish(Pelteobagrus fulvidraco)[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2019,222:65-73. |
[38] | 麻艳群, 卢克焕, 黄凯, 等. Cu2+胁迫对禾花鲤(Procypris mterus)过氧化氢酶活性的影响[J]. 安徽农业大学学报, 2010,37(4):623-626. |
Ma Y, Lu K, Huang K, et al. Effect of copper stress on catalase activity of carp(Procypris mterus)[J]. Journal of Anhui Agricultural University, 2010,37(4):623-626. | |
[39] |
Firat O, Cogun HY, Aslanyavrusu S, et al. Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn + Cd exposures[J]. Journal of Applied Toxicology, 2009,29(4):295-301.
doi: 10.1002/jat.v29:4 URL |
[40] | Fatima M, Usmani N, Firdaus F, et al. In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India(Kali)river[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2015,176:17-30. |
[41] |
Pandey S, Parvez S, Ansari RA, et al. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch[J]. Chemico-Biological Interactions, 2008,174(3):183-192.
doi: 10.1016/j.cbi.2008.05.014 URL |
[42] |
Atli G, Canli M. Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures[J]. Environmental Toxicology and Pharmacology, 2008,25(1):33-38.
doi: 10.1016/j.etap.2007.08.007 URL |
[43] | Javed M, Usmani N, Ahmad I, et al. Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant[J]. Environmental Monitoring & Assessment, 2015,187(1):1-11. |
[44] |
Srikanth K, Pereira E, Duarte AC, et al. Glutathione and its dependent enzymes’modulatory responses to toxic metals and metalloids in fish:A review[J]. Environmental Science and Pollution Research, 2013,20(4):2133-2149.
doi: 10.1007/s11356-012-1459-y URL |
[45] | 肖丹, 王海燕, 韩大雄. Hg2+、Cu2+、Zn2+、Cd2+胁迫下罗非鱼离体肝脏中GSH和GST的响应[J]. 海洋环境科学, 2014,33(3):346-350. |
Xiao D, Wang H, Han D. Responses of GSH and GST in liver of Mossambica tilapia under Hg2+, Cu2+, Zn2+and Cd2+ stress in vitro[J]. Marine Environmental Science, 2014,33(3):346-350. | |
[46] |
Canesi L, Viarengo A, Leonzio C, et al. Heavy metals and glutathione metabolism in mussel tissues[J]. Aquatic Toxicology, 1999,46(1):67-76.
doi: 10.1016/S0166-445X(98)00116-7 URL |
[47] |
Wu H, Zhao X, Sun S, et al. Variations of antioxidant enzyme activity and malondialdehyde content in nemertean Cephalothrix hongkongiensis after exposure to heavy metals[J]. Chinese Journal of Oceanology and Limnology, 2010,28(4):917-923.
doi: 10.1007/s00343-010-9050-1 URL |
[48] |
Das D, Moniruzzaman M, Sarbajna A, et al. Effect of heavy metals on tissue-specific antioxidant response in Indian major carps[J]. Environmental Science and Pollution Research, 2017,24(22):18010-18024.
doi: 10.1007/s11356-017-9415-5 URL |
[49] |
Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage[J]. Clinical Chemistry, 1995,41(12):1819-1828.
doi: 10.1093/clinchem/41.12.1819 URL |
[50] | 曾乐意. 长江上游几种鱼类重金属含量及饲料铅对中华倒刺鲃的生理生态学影响[D]. 重庆:西南大学, 2012. |
Zeng LY. The contents of heavy metals in several fish species from upstream of the Yangtze River and ecophysiological effects of the dietary lead(Pb)on Spinibarbus sinensis[D]. Chongqing:Southwest University, 2012. |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[3] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[6] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[7] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[8] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[9] | 袁存霞, 李艳楠, 张肖冲, 杨瑞, 刘建利, 李靖宇. As3+胁迫下Bacillus sp. ZJS3菌株的生理生化响应特性[J]. 生物技术通报, 2022, 38(7): 236-246. |
[10] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[11] | 张丰文, 周丽亚, 董超, 史延茂. 纳豆中抗氧化肽的分离纯化与活性研究[J]. 生物技术通报, 2022, 38(2): 158-165. |
[12] | 岑潇龙, 雷曦, 马诗云, 陈倩茹, 黄遵锡, 周峻沛, 张蕊. 金黄色葡萄球菌透明质酸裂解酶HylS的异源表达与特性研究[J]. 生物技术通报, 2022, 38(1): 157-167. |
[13] | 吴坤坤, 徐行, 季策, 任建峰, 李伟明, 张庆华. 斑马鱼notch3基因真核表达载体的构建及其表达分析[J]. 生物技术通报, 2022, 38(1): 179-186. |
[14] | 王小河, 辜夕容, 祁顺菊, 李杰, 崔瑶, 李得霞, 杨莉荟. 巴山榧树枝和叶提取物的抗氧化能力、抑菌活性与挥发性成分[J]. 生物技术通报, 2021, 37(8): 152-161. |
[15] | 康凌云, 陈建胜, 甘瀚凌, 韩露露, 冯海霞, 刁其玉, 邢凯, 崔凯. 基于转录组学技术分析蛋白质限制与补偿对羔羊肝脏抗氧化性能的影响[J]. 生物技术通报, 2021, 37(6): 171-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||