生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 257-265.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1478
收稿日期:
2020-12-01
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
刘莹,女,博士,研究方向:新型纳米材料;E-mail: 基金资助:
LIU Ying(), CHENG Li, ZHANG Bo()
Received:
2020-12-01
Published:
2021-10-26
Online:
2021-11-12
摘要:
游离DNA作为液体活检的目标检测物,能够用于疾病的检测,但游离DNA在样本中的含量低,且片段差异小,常规方法很难实现对特定片段长度游离DNA的筛选。这种基于新型磁分离技术对游离DNA进行高分辨率筛选的方法,使用自主合成的两种不同修饰的磁珠,在沉降剂的作用下,能够实现长短片段DNA的分别回收。通过对血浆样本中游离DNA进行富集,实现了150 bp以下DNA片段的富集,并经由临床样本验证,这一技术能够实现母体血浆样本中胎儿游离DNA的富集,可在无创产前诊断样本处理环节提前检测窗口、提高检测灵敏度等。DNA片段筛选在基因测序领域是不可或缺的环节,高分辨率筛选可降低下游测序深度、节约测序成本等,可应用于肿瘤的早期筛查、无创产前诊断和免疫缺陷型疾病筛查领域。
刘莹, 程立, 张博. 基于新型磁分离技术的高分辨率DNA片段筛选技术[J]. 生物技术通报, 2021, 37(10): 257-265.
LIU Ying, CHENG Li, ZHANG Bo. High-resolution DNA Screening Based on Novel Magnetic Separation Technology[J]. Biotechnology Bulletin, 2021, 37(10): 257-265.
引物名称Primer | 引物序列Sequence |
---|---|
Y染色体正向引物(qPCR) | CATTCTCAAGCAAAACATGG |
Y染色体反向引物(qPCR) | CAGCAGTAGAGCAGTCAG |
Y染色体探针(qPCR) | CGTTGACTACTTGCCCT |
Y染色体正向引物(ddPCR) | CATTCTCAAGCAAAACATGG |
Y染色体反向引物(ddPCR) | CAGCAGTAGAGCAGTCAG |
Y染色体探针(ddPCR) | CGTTGACTACTTGCCCT |
X染色体正向引物(ddPCR) | AGTCACACCCACTTGTT |
X染色体反向引物(ddPCR) | GGGCCATACAATCTGTTG |
X染色体探针(ddPCR) | CTCTGACCTGGTAGCAC |
表1 引物和探针信息表
Table 1 Information of primers and probes
引物名称Primer | 引物序列Sequence |
---|---|
Y染色体正向引物(qPCR) | CATTCTCAAGCAAAACATGG |
Y染色体反向引物(qPCR) | CAGCAGTAGAGCAGTCAG |
Y染色体探针(qPCR) | CGTTGACTACTTGCCCT |
Y染色体正向引物(ddPCR) | CATTCTCAAGCAAAACATGG |
Y染色体反向引物(ddPCR) | CAGCAGTAGAGCAGTCAG |
Y染色体探针(ddPCR) | CGTTGACTACTTGCCCT |
X染色体正向引物(ddPCR) | AGTCACACCCACTTGTT |
X染色体反向引物(ddPCR) | GGGCCATACAATCTGTTG |
X染色体探针(ddPCR) | CTCTGACCTGGTAGCAC |
图2 cfDNA短片段富集的模型体系验证 A :富集前后DNA片段分布;B :富集前后150 bp以下DNA片段占比变化;C :富集前后cfDNA主峰平均长度变化
Fig.2 Verification of short DNA fragments enrichment A: DNA fragments distribution before and after enrichment. B: DNA fragments distribution(below 150 bp)before and after enrichment. C: Average length of cfDNA main peak before and after entichment
图3 ddPCR验证结果 A :富集前后ddPCR对X、Y染色体拷贝数检测流程示意图;B :富集前后ddPCR荧光信号示意图;C :21个男性胎儿孕妇血浆样本富集前后Y染色体比例变化;D :21个男性胎儿孕妇血浆样本富集前后Y染色体拷贝数变化倍数
Fig.3 Enrichment efficiency evaluation by ddPCR A: Workflow of copy number calculation for ChrX and ChrY by ddPCR before and after enrichment. B: Fluorescence signal of sample before and after enrichment. C: ChrY% statistics of 21 samples from pregnant women with male fetus. D: ChrY% fold change for 21 samples from pregnant women with male fetus
图5 优化后胎牛血清cfDNA短片段的富集 A :二次筛选后富集前后DNA片段分布变化;B :二次筛选两步长片段分离DNA片段分布,两步长片段分离起峰位置均在150 bp左右;C :二次筛选富集前后150 bp以下DNA片段占比变化;D :二次筛选富集前后cfDNA主峰平均长度变化
Fig. 5 Enrichment of short cfDNA fragments with fetal bovine serum by optimized workflow A: Changes in DNA fragments distribution before and after 2-step selection enrichment. B: Fragment distribution by 2-time selection and 2-step long fragments DNA separation with the peak beginning position at 150 bp. C: Proportion of DNA below 150 bp before and after enrichment. D: Average length change of cfDNA main peak
[1] | 杨麒巍, 于杉, 张桂珍. 孕妇外周血中游离胎儿DNA富集与分离方法及在无创性产前诊断中的应用[J]. 中国实验诊断学, 2014, 18(2):345-348. |
Yang Q, Yu S, Zhang G. Enrichment and isolation of cell free fetal DNA in the peripheral blood of pregnant women and its application in non-invasive prenatal diagnosis[J]. Chinese Journal of Laboratory Diagnosis, 2014, 18(2):345-348. | |
[2] | RanuccI R. Cell-Free DNA:Applications in different diseases[J]. Methods in Molecular Biology, 2019, 1909(1):3-12. |
[3] | Chen C, Chern S, Wu P, et al. Prenatal diagnosis of low-level mosaicism for trisomy 13 at amniocentesis associated with a favorable outcome[J]. Taiwanese Journal of Obstetrics & Gynecology, 2017, 56(6):840-842. |
[4] | Chen C, Weng S, Chern S, et al. Prenatal diagnosis of mosaicism for trisomy 11 in a single colony at amniocentesis in a pregnancy with a favorable outcome[J]. Taiwanese Journal of Obstetrics & Gynecology, 2020, 59(2):331-333. |
[5] | 赵金侠, 郑元元. 颈项透明层厚度超声联合血清AFP、free β-HCG筛查孕早期21-三体综合征胎儿效能的价值[J]. 生物医学工程与临床, 2018, 22(3):267-271. |
Zhao J, Zheng Y. Efficacy value of nuchal translucency thickness ultrasound combined with serum AFP and free β-HCG levels for the screening of 21 trisomy syndrome at early pregnancy[J]. Biomedical Engineering and Clinical Medicine, 2018, 22(3):267-271. | |
[6] | 朱继红, 文珂. 胎儿鼻骨、颈项透明层厚度与母体血清学检测联合筛查唐氏综合征[J]. 中国现代医学杂志, 2016, 26(22):50-53. |
Zhu J, Wen K. Joint measurement of fetal nasal bone and nuchal translucency and maternal serological test for identification of Down’s syndrome[J]. China Journal of Modern Medicine, 2016, 26(22):50-53. | |
[7] | Mandel P, Metais P, Métais P. Les acides nucléiques du plasma sanguin chez l’ homme[J]. Comptes Rendus de l’Académie des Sciences, 1948, 142(3-4):241-243. |
[8] | Gurioli G. Epigenetic characterization of cell-free DNA[J]. Methods in Molecular Biology, 2019, 1909(1):129-135. |
[9] | Salvi S, Casadio V. Urinary cell-free DNA:potential and applications[J]. Methods in Molecular Biology, 2019, 1909(1):201-209. |
[10] |
Shi J, Zhang R, Li J, et al. Size profile of cell-free DNA:A beacon guiding the practice and innovation of clinical testing[J]. Theranostics, 2020, 10(11):4737-4748.
doi: 10.7150/thno.42565 URL |
[11] |
Wang Z, Cui W. CRISPR-Cas system for biomedical diagnostic platforms[J]. View, 2020, 1(3):20200008-20200029.
doi: 10.1002/viw2.v1.3 URL |
[12] |
Cao J, Shi X, Gurav D, et al. Metabolic fingerprinting on synthetic alloys for medulloblastoma diagnosis and radiotherapy evaluation[J]. Advanced Materials, 2020, 32(23):2000906-2000917.
doi: 10.1002/adma.v32.23 URL |
[13] | Ravaioli S. Cell-free DNA integrity:applications[J]. Methods in Molecular Biology, 2019, 1909(1):77-83. |
[14] | Tombolan L, Zin A, Bisogno G. Cell-free DNA in pediatric rhabdomyosarcoma:potential and challenges[J]. Methods in Molecular Biology, 2019, 1909(1):165-175. |
[15] | Mende M, Thiede C, Schuster C, et al. Detection of tumor progression via cell-free DNA(cfDNA)in patients with colorectal cancer[J]. Journal of Clinical Oncology, 2015, 33(s3):598. |
[16] | Sigalotti L, Covre A, Colizzi F, et al. Quantitative methylation-specific PCR:A simple method for studying epigenetic modifications of cell-free DNA[J]. Methods in Molecular Biology, 2019, 1909(1):137-162. |
[17] | Takeshita T, Iwase H. dPCR mutational analyses in cell-free DNA:a comparison with tissues[J]. Methods in Molecular Biology, 2019, 1909(1):105-118. |
[18] | Tebaldi M, Salvi S. From cfDNA to sequencing:workflows and potentials[J]. Methods in Molecular Biology, 2019, 1909(1):119-125. |
[19] |
Konigshofer Y, Egyud M, Godfrey T, et al. Circulating Cell Free DNA(cfDNA)Isolated and Amplified from the Plasma of Pancreatic Cancer Patients as Reference Material for ctDNA Assays[J]. Journal of Molecular Diagnostics, 2017, 19(6):1027-1027.
doi: <空> |
[20] |
Konigshofer Y, Egyud M, Godfrey T, et al. Circulating cell free DNA(cfDNA)isolated and amplified from the plasma of pancreatic cancer patients as reference material for ctDNA assays[J]. Journal of Molecular Diagnostics, 2017, 19(6):1027-1027.
doi: <空> |
[21] | Lo YMD, Chan KCA, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus[J]. Science Translational Medicine, 2010, 2(61):61-91. |
[22] |
Du M, Flanagan JH, Lin B, et al. Rapid separation and laser-induced fluorescence detection of mutated DNA by capillary electrophoresis in a self-coating, low-viscosity polymer matrix[J]. Electrophoresis, 2003, 24(18):3147-3153.
doi: 10.1002/(ISSN)1522-2683 URL |
[23] |
Danielson PB, Kristinsson R, Shelton RJ, et al. Separating human DNA mixtures using denaturing high-performance liquid chromatography[J]. Expert Review of Molecular Diagnostics, 2005, 5(1):53-63.
pmid: 15723592 |
[24] |
Omaruddin RA, Chaudhry MA. Detection of genomic DNA methylation with denaturing high performance liquid chromatography[J]. Human Cell, 2010, 23(2):41-49.
doi: 10.1111/j.1749-0774.2010.00084.x pmid: 20712707 |
[25] |
Deng H, Li X, Li Y, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angewandte Chemie-International Edition, 2005, 44(18):2782-2785.
doi: 10.1002/anie.v44:18 URL |
[26] |
Zhang B, Zhao S, Wan H, et al. High-resolution DNA size enrichment using a magnetic nano-platform and application in non-invasive prenatal testing[J]. Analyst, 2020, 145(17):5733-5739.
doi: 10.1039/d0an00813c pmid: 32748914 |
[27] | Kadir RA, Tsui NBY, Chan A, et al. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA[J]. Journal of Thrombosis and Haemostasis, 2011, 117(13):3684-3691. |
[28] | Chen M, Chen C, Li Y, et al. Haplotype-based noninvasive prenatal diagnosis for duchenne muscular dystrophy:A pilot study in South China[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2019, 240(1):15-22. |
[29] | Young EC, Bowns B, Gerrish A, et al. Non-invasive prenatal diagnosis(NIPD)of single gene disorders by relative haplotype dosage(RHDO):review of 18 months of clinical service[J]. European Journal of Human Genetics, 2019, 27(1):26-26. |
[30] |
Deans ZC, Butler R, Cheetham M, et al. IQN path ASBL report from the first European cfDNA consensus meeting:expert opinion on the minimal requirements for clinical ctDNA testing[J]. Virchows Archiv, 2019, 474(6):681-689.
doi: 10.1007/s00428-019-02571-3 URL |
[31] | Fici P. Cell-Free DNA in the liquid biopsy context:role and differences between ctDNA and CTC marker in cancer management[J]. Methods in Molecular Biology, 2019, 1909(1):47-73. |
[32] |
Mouliere F, Chandrananda D, Piskorz M A, et al. Enhanced detection of circulating tumor DNA by fragment size analysis[J]. Science Translational Medicine 2018, 10(466):eaat4921-4933.
doi: 10.1126/scitranslmed.aat4921 URL |
[33] | Jiang P, Sun K, Tong Y, et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma[J]. PNAS, 2018, 115(46):10925-10933. |
[34] |
Xu Y, Song Y, Chang J, et al. High levels of circulating cell-free DNA are a biomarker of active SLE[J]. European Journal of Clinical Investigation, 2018, 48(11):e13015-13024.
doi: 10.1111/eci.2018.48.issue-11 URL |
[35] |
Yan Y, Wang F, Zhang C, et al. Evaluation of droplet digital PCR for non-invasive prenatal diagnosis of phenylketonuria[J]. Analytical and Bioanalytical Chemistry, 2019, 411(27):7115-7126.
doi: 10.1007/s00216-019-02087-4 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||