生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 266-276.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1585
收稿日期:
2020-12-31
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
李恬静薇,女,硕士研究生,研究方向:水产养殖;E-mail: 基金资助:
LI Tianjingwei1,2(), ZOU Xiao-xiao2, ZHU Jun2, BAO Shi-xiang2()
Received:
2020-12-31
Published:
2021-10-26
Online:
2021-11-12
摘要:
为了筛选出长茎葡萄蕨藻中稳定表达的内参基因用于实时荧光定量PCR的分析,以不同胁迫条件下长茎葡萄蕨藻的匍匐茎和直立枝为材料,使用比较Ct值法、BestKeeper、geNorm、NormFinder软件综合比较了常用的5个候选内参基因的稳定性,并对筛选出的内参基因进行了验证。不同内参基因在长茎葡萄蕨藻中的表达稳定性差异较大,ClACT和ClGAPDH在长茎葡萄蕨藻不同组织、不同胁迫条件下的表达稳定性均较好,而ClTUB表达稳定性则较差。在使用RT-qPCR对胁迫条件下长茎葡萄蕨藻进行基因表达分析时,采用ClACT和ClGAPDH组合作为内参基因可得出较为准确的结果。
李恬静薇, 邹潇潇, 朱军, 鲍时翔. 长茎葡萄蕨藻胁迫条件下RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2021, 37(10): 266-276.
LI Tianjingwei, ZOU Xiao-xiao, ZHU Jun, BAO Shi-xiang. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Caulerpa lentillifera Under Stress Conditions[J]. Biotechnology Bulletin, 2021, 37(10): 266-276.
处理组 Treatment group | 处理条件 Treatment conditions | 组织部位Tissues |
---|---|---|
对照组 | 温度27℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度胁迫 | 温度15℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度37℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 | |
匍匐茎 | ||
光照胁迫 | 温度27℃,光照120 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度27℃,光照360 μmol/(s · m2),盐度30‰ | 直立枝 | |
匍匐茎 | ||
盐度胁迫 | 温度27℃,光照360 μmol/(s · m2),盐度15‰ | 直立枝 |
匍匐茎 | ||
温度27℃,光照360 μmol/(s · m2),盐度40‰ | 直立枝 | |
匍匐茎 |
表 1 长茎葡萄蕨藻样品处理方法
Table 1 Sample processing method of C. lentillifera
处理组 Treatment group | 处理条件 Treatment conditions | 组织部位Tissues |
---|---|---|
对照组 | 温度27℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度胁迫 | 温度15℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度37℃,光照40 μmol/(s · m2),盐度30‰ | 直立枝 | |
匍匐茎 | ||
光照胁迫 | 温度27℃,光照120 μmol/(s · m2),盐度30‰ | 直立枝 |
匍匐茎 | ||
温度27℃,光照360 μmol/(s · m2),盐度30‰ | 直立枝 | |
匍匐茎 | ||
盐度胁迫 | 温度27℃,光照360 μmol/(s · m2),盐度15‰ | 直立枝 |
匍匐茎 | ||
温度27℃,光照360 μmol/(s · m2),盐度40‰ | 直立枝 | |
匍匐茎 |
候选基因Candidate gene | 基因登录号 Accession No. | 引物序列(上游/下游,5'-3') Primer sequence(forward/revers, 5'-3') | 片段大小 Fragment length/bp | Tm/℃ | E/% |
---|---|---|---|---|---|
ClACT | MW039598 | GGTGGTGAACGATTCCGAT TTCTGACATCTCTTTACTGACTCTC | 203 | 50 | 93.76 |
Cl18S | JN034412.1 | ATCTAAGGAAGGCAGCAGG TCTATCGCCAGAAGTCCAAC | 241 | 50 | 94.80 |
ClGAPDH | MW036245 | GAAGAAGGACTGGAGAGGA GTAGGAACTCTAAACGCCA | 135 | 50 | 95.36 |
ClEF1a | MW021590 | AGCTGGAATTTCAAAAGACG AGAGATAGGAACAAAGGGGA | 211 | 50 | 102.00 |
ClTUB | MW039599 | ATTGGGAAGGAGATGGTGGA GACTTGCGGAGACGGATAAA | 204 | 54 | 90.36 |
表2 长茎葡萄蕨藻5个候选内参基因的RT-qPCR引物
Table 2 RT-qPCR primers for five candidate internal reference genes of C. lentillifera
候选基因Candidate gene | 基因登录号 Accession No. | 引物序列(上游/下游,5'-3') Primer sequence(forward/revers, 5'-3') | 片段大小 Fragment length/bp | Tm/℃ | E/% |
---|---|---|---|---|---|
ClACT | MW039598 | GGTGGTGAACGATTCCGAT TTCTGACATCTCTTTACTGACTCTC | 203 | 50 | 93.76 |
Cl18S | JN034412.1 | ATCTAAGGAAGGCAGCAGG TCTATCGCCAGAAGTCCAAC | 241 | 50 | 94.80 |
ClGAPDH | MW036245 | GAAGAAGGACTGGAGAGGA GTAGGAACTCTAAACGCCA | 135 | 50 | 95.36 |
ClEF1a | MW021590 | AGCTGGAATTTCAAAAGACG AGAGATAGGAACAAAGGGGA | 211 | 50 | 102.00 |
ClTUB | MW039599 | ATTGGGAAGGAGATGGTGGA GACTTGCGGAGACGGATAAA | 204 | 54 | 90.36 |
基因 Gene | 基因登录号 Accession No. | 引物序列(上游/下游,5'-3') Primer sequence (forward/reverse, 5'-3') | 片段大小 Fragment length/bp | Tm/℃ |
---|---|---|---|---|
ClHSP90 | MW088997 | ATGGAGGCATTGTCCGCTGTTGCTCATCGTCGTTATGGTGT | 123 | 55 |
ClSSD | MW088998 | CACTCGTGATGAGGATGGAAAGCTGGCTCCTTGCTCTTATCGTA | 98 | 55 |
表3 ClHSP90 和 ClSSD 引物序列
Table 3 Primer sequences of ClHSP90 and ClSSD
基因 Gene | 基因登录号 Accession No. | 引物序列(上游/下游,5'-3') Primer sequence (forward/reverse, 5'-3') | 片段大小 Fragment length/bp | Tm/℃ |
---|---|---|---|---|
ClHSP90 | MW088997 | ATGGAGGCATTGTCCGCTGTTGCTCATCGTCGTTATGGTGT | 123 | 55 |
ClSSD | MW088998 | CACTCGTGATGAGGATGGAAAGCTGGCTCCTTGCTCTTATCGTA | 98 | 55 |
图1 长茎葡萄蕨藻总RNA琼脂糖凝胶电泳检测 1-7为长茎葡萄蕨藻匍匐茎样品;8-14为长茎葡萄蕨藻直立枝样品,从左到右依次为:对照组,15℃温度胁迫,37℃温度胁迫,120 μmol/(s · m2)光照胁迫,360 μmol/(s · m2)光照胁迫,15‰盐度胁迫,40‰盐度胁迫
Fig. 1 Agarose gel electrophoresis of total RNA from C. lentillifera 1-7 are the stolon samples of C. lentillifera. 8-14 are the branch samples of C. lentillifera. From left to right the order is: control group, temperature stress of 15℃, temperature stress of 37℃, light stress of 120 μmol/(s · m2), light stress of 360 μmol/(s · m2), salinity stress of 15‰, and salinity stress of 40‰
基因 Gene | 光照胁迫Light stress | 盐度胁迫Salinity stress | 温度胁迫Temperature stress | ||||||
---|---|---|---|---|---|---|---|---|---|
BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | |
ClACT | 0.66 | 0.441 | 0.453 | 0.69 | 0.683 | 0.343 | 0.51 | 0.648 | 0.340 |
Cl18S | 0.45 | 0.558 | 0.275 | 0.75 | 0.783 | 0.351 | 0.66 | 0.704 | 0.273 |
ClEF1a | 0.78 | 0.541 | 0.431 | 1.20 | 1.084 | 0.739 | 0.77 | 0.760 | 0.497 |
ClGAPDH | 0.70 | 0.416 | 0.163 | 0.72 | 0.781 | 0.359 | 0.65 | 0.872 | 0.420 |
ClTUB | 0.89 | 0.540 | 0.768 | 1.06 | 0.853 | 0.529 | 0.91 | 1.145 | 0.765 |
基因 Gene | 匍匐茎Stolon | 直立枝Branch | 所有样品All samples | ||||||
BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | |
ClACT | 0.67 | 0.677 | 0.149 | 0.61 | 0.700 | 0.204 | 0.67 | 0.685 | 0.175 |
Cl18S | 0.67 | 0.802 | 0.411 | 0.55 | 0.710 | 0.270 | 0.68 | 0.765 | 0.352 |
ClEF1a | 1.04 | 0.963 | 0.400 | 0.59 | 0.834 | 0.287 | 0.84 | 0.893 | 0.343 |
ClGAPDH | 0.77 | 0.826 | 0.376 | 0.64 | 0.800 | 0.348 | 0.72 | 0.812 | 0.366 |
ClTUB | 0.88 | 1.079 | 0.687 | 0.81 | 1.097 | 0.743 | 0.86 | 1.077 | 0.706 |
表4 5个候选内参基因稳定性BestKeeper、geNorm和NormFinder分析结果
Table 4 Analysis results of the stability of five candidate reference genes by BestKeeper, geNorm and NormFinder
基因 Gene | 光照胁迫Light stress | 盐度胁迫Salinity stress | 温度胁迫Temperature stress | ||||||
---|---|---|---|---|---|---|---|---|---|
BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | |
ClACT | 0.66 | 0.441 | 0.453 | 0.69 | 0.683 | 0.343 | 0.51 | 0.648 | 0.340 |
Cl18S | 0.45 | 0.558 | 0.275 | 0.75 | 0.783 | 0.351 | 0.66 | 0.704 | 0.273 |
ClEF1a | 0.78 | 0.541 | 0.431 | 1.20 | 1.084 | 0.739 | 0.77 | 0.760 | 0.497 |
ClGAPDH | 0.70 | 0.416 | 0.163 | 0.72 | 0.781 | 0.359 | 0.65 | 0.872 | 0.420 |
ClTUB | 0.89 | 0.540 | 0.768 | 1.06 | 0.853 | 0.529 | 0.91 | 1.145 | 0.765 |
基因 Gene | 匍匐茎Stolon | 直立枝Branch | 所有样品All samples | ||||||
BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | BestKeeper(SD) | geNorm(M) | NormFinder | |
ClACT | 0.67 | 0.677 | 0.149 | 0.61 | 0.700 | 0.204 | 0.67 | 0.685 | 0.175 |
Cl18S | 0.67 | 0.802 | 0.411 | 0.55 | 0.710 | 0.270 | 0.68 | 0.765 | 0.352 |
ClEF1a | 1.04 | 0.963 | 0.400 | 0.59 | 0.834 | 0.287 | 0.84 | 0.893 | 0.343 |
ClGAPDH | 0.77 | 0.826 | 0.376 | 0.64 | 0.800 | 0.348 | 0.72 | 0.812 | 0.366 |
ClTUB | 0.88 | 1.079 | 0.687 | 0.81 | 1.097 | 0.743 | 0.86 | 1.077 | 0.706 |
图3 候选内参基因在样品中的表达谱 A:光照胁迫;B:盐度胁迫;C:温度胁迫;D:匍匐茎;E:直立枝;F:所有样品
Fig. 3 Expression profile of candidate internal reference genes in samples A: Light stress. B: Salinity stress. C: Temperature stress. D: Stolon. E: Branch. F: All samples
排序 Ranking | 光照胁迫Light stress | 排序 Ranking | 盐度胁迫Salinity stress | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | Cl18S | Cl18S | ClGAPDH | ClGAPDH | ClGAPDH | 1 | ClACT | ClACT | ClACT | ClACT | ClACT |
2 | ClACT | ClACT | ClACT | Cl18S | Cl18S | 2 | ClGAPDH | ClGAPDH | ClGAPDH | Cl18S | ClGAPDH |
3 | ClGAPDH | ClGAPDH | ClEF1a | ClEF1a | ClACT | 3 | Cl18S | Cl18S | Cl18S | ClGAPDH | Cl18S |
4 | ClTUB | ClEF1a | ClTUB | ClACT | ClEF1a | 4 | ClTUB | ClTUB | ClTUB | ClTUB | ClTUB |
5 | ClEF1a | ClTUB | Cl18S | ClTUB | ClTUB | 5 | ClEF1a | ClEF1a | ClEF1a | ClEF1a | ClEF1a |
排序 Ranking | 温度胁迫Temperature stress | 排序 Ranking | 匍匐茎Stolon | ||||||||
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | ClACT | ClACT | ClACT | Cl18S | ClACT | 1 | Cl18S | ClACT | ClACT | ClACT | ClACT |
2 | ClGAPDH | ClGAPDH | Cl18S | ClACT | Cl18S | 2 | ClACT | Cl18S | Cl18S | ClGAPDH | Cl18S |
3 | Cl18S | Cl18S | ClEF1a | ClGAPDH | ClGAPDH | 3 | ClGAPDH | ClGAPDH | ClGAPDH | ClEF1a | ClGAPDH |
4 | ClTUB | ClEF1a | ClGAPDH | ClEF1a | ClEF1a | 4 | ClTUB | ClTUB | ClEF1a | Cl18S | ClEF1a |
5 | ClEF1a | ClTUB | ClTUB | ClTUB | ClTUB | 5 | ClEF1a | ClEF1a | ClTUB | ClTUB | ClTUB |
排序 Ranking | 直立枝Branch | 排序 Ranking | 全部样品All samples | ||||||||
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | Cl18S | Cl18S | ClACT | ClACT | ClACT | 1 | Cl18S | ClACT | ClACT | ClACT | ClACT |
2 | ClGAPDH | ClEF1a | Cl18S | Cl18S | Cl18S | 2 | ClACT | Cl18S | Cl18S | ClEF1a | Cl18S |
3 | ClEF1a | ClACT | ClGAPDH | ClEF1a | ClEF1a | 3 | ClGAPDH | ClGAPDH | ClGAPDH | Cl18S | ClGAPDH |
4 | ClACT | ClGAPDH | ClEF1a | ClGAPDH | ClGAPDH | 4 | ClTUB | ClEF1a | ClEF1a | ClGAPDH | ClEF1a |
5 | ClTUB | ClTUB | ClTUB | ClTUB | ClTUB | 5 | ClEF1a | ClTUB | ClTUB | ClTUB | ClTUB |
表 5 5个候选内参基因稳定性排序
Table 5 Stability rankings of five candidate reference genes
排序 Ranking | 光照胁迫Light stress | 排序 Ranking | 盐度胁迫Salinity stress | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | Cl18S | Cl18S | ClGAPDH | ClGAPDH | ClGAPDH | 1 | ClACT | ClACT | ClACT | ClACT | ClACT |
2 | ClACT | ClACT | ClACT | Cl18S | Cl18S | 2 | ClGAPDH | ClGAPDH | ClGAPDH | Cl18S | ClGAPDH |
3 | ClGAPDH | ClGAPDH | ClEF1a | ClEF1a | ClACT | 3 | Cl18S | Cl18S | Cl18S | ClGAPDH | Cl18S |
4 | ClTUB | ClEF1a | ClTUB | ClACT | ClEF1a | 4 | ClTUB | ClTUB | ClTUB | ClTUB | ClTUB |
5 | ClEF1a | ClTUB | Cl18S | ClTUB | ClTUB | 5 | ClEF1a | ClEF1a | ClEF1a | ClEF1a | ClEF1a |
排序 Ranking | 温度胁迫Temperature stress | 排序 Ranking | 匍匐茎Stolon | ||||||||
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | ClACT | ClACT | ClACT | Cl18S | ClACT | 1 | Cl18S | ClACT | ClACT | ClACT | ClACT |
2 | ClGAPDH | ClGAPDH | Cl18S | ClACT | Cl18S | 2 | ClACT | Cl18S | Cl18S | ClGAPDH | Cl18S |
3 | Cl18S | Cl18S | ClEF1a | ClGAPDH | ClGAPDH | 3 | ClGAPDH | ClGAPDH | ClGAPDH | ClEF1a | ClGAPDH |
4 | ClTUB | ClEF1a | ClGAPDH | ClEF1a | ClEF1a | 4 | ClTUB | ClTUB | ClEF1a | Cl18S | ClEF1a |
5 | ClEF1a | ClTUB | ClTUB | ClTUB | ClTUB | 5 | ClEF1a | ClEF1a | ClTUB | ClTUB | ClTUB |
排序 Ranking | 直立枝Branch | 排序 Ranking | 全部样品All samples | ||||||||
△Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | △Ct | BestKeeper | geNorm | NormFinder | 综合排序Compr- ehensive ranking | ||
1 | Cl18S | Cl18S | ClACT | ClACT | ClACT | 1 | Cl18S | ClACT | ClACT | ClACT | ClACT |
2 | ClGAPDH | ClEF1a | Cl18S | Cl18S | Cl18S | 2 | ClACT | Cl18S | Cl18S | ClEF1a | Cl18S |
3 | ClEF1a | ClACT | ClGAPDH | ClEF1a | ClEF1a | 3 | ClGAPDH | ClGAPDH | ClGAPDH | Cl18S | ClGAPDH |
4 | ClACT | ClGAPDH | ClEF1a | ClGAPDH | ClGAPDH | 4 | ClTUB | ClEF1a | ClEF1a | ClGAPDH | ClEF1a |
5 | ClTUB | ClTUB | ClTUB | ClTUB | ClTUB | 5 | ClEF1a | ClTUB | ClTUB | ClTUB | ClTUB |
图5 使用不同内参基因分析HSP90(A)和SSD(B)在长茎葡萄蕨藻胁迫条件下的相对表达量
Fig. 5 Analysis of relative expressions of HSP90(A)and SSD(B)by different reference genes under the stress of C. lentillifera
[1] |
Wong ML, Medrano JF. Real-time PCR for mRNA quantitation[J]. BioTechniques, 2005, 39(1):75-85.
doi: 10.2144/05391RV01 URL |
[2] |
Artico S, Nardeli SM, Brilhante O, et al. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data[J]. BMC Plant Biology, 2010, 10(1):49.
doi: 10.1186/1471-2229-10-49 URL |
[3] |
Die JV, Román B, Nadal S, et al. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions[J]. Planta, 2010, 232(1):145-153.
doi: 10.1007/s00425-010-1158-1 URL |
[4] | Schmidt GW, Delaney SK. Stable internal reference genes for normalization of real-time RT-PCR in tobacco(Nicotiana tabacum)during development and abiotic stress[J]. Molecular Genetics & Genomics, 2010, 283(3):233-241. |
[5] |
Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR[J]. Nature Protocols, 2006, 1(3):1559-1582.
doi: 10.1038/nprot.2006.236 URL |
[6] |
Nicot N, Hausman JF, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 2005, 56(421):2907-2914.
doi: 10.1093/jxb/eri285 URL |
[7] |
Expósito-Rodríguez M, Borges AA, Borges-Pérez A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process[J]. BMC Plant Biology, 2008, 8:131.
doi: 10.1186/1471-2229-8-131 pmid: 19102748 |
[8] |
Gutierrez L, Guénin M, Mauriat S, et al. The lack of a systematic validation of reference genes:a serious pitfall undervalued in reverse transcription-polymerase chain reaction(RT-PCR)analysis in plants[J]. Plant Biotechnology Journal, 2008, 6:609-18.
doi: 10.1111/j.1467-7652.2008.00346.x pmid: 18433420 |
[9] | Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):research0034. 1-0034. 11. |
[10] |
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245-5250.
doi: 10.1158/0008-5472.CAN-04-0496 URL |
[11] |
Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-Based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6):509-515.
doi: 10.1023/B:BILE.0000019559.84305.47 URL |
[12] |
Liu Q, Wei C, Zhang MF, et al. Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress[J]. PeerJ, 2016, 4:e1837.
doi: 10.7717/peerj.1837 URL |
[13] | Li MY, Wang F, Jiang Q, et al. Validation and comparison of reference genes for qPCR normalization of celery(Apium graveolens)at different development stages[J]. Frontiers in Plant Science, 2016, 7:313. |
[14] | Ma R, Xu S, Zhao YC, et al. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis of gene expression in Lycoris aurea[J]. Frontiers in Plant Science, 2016, 7:536. |
[15] |
Leida C, Moser C, Esteras C, et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon(Cucumis melo L.)[J]. BMC Genetics, 2015, 16:28.
doi: 10.1186/s12863-015-0183-2 URL |
[16] | Wu JY, Zhang HN, Liu LQ, et al. Validation of reference genes for RT-qPCR studies of gene expression in preharvest and postharvest longan fruits under different experimental conditions[J]. Frontiers in Plant Science, 2016, 7:780. |
[17] | Wang WL, Wu XJ, Wang C, et al. Exploring valid internal-control genes in Porphyra yezoensis(Bangiaceae)during stress response conditions[J]. Journal of Oceanology and Limnology, 2014, 32(4):783-791. |
[18] |
Wu X, Niu J, Huang A, et al. Selection of internal control gene for expression studies in Porphyra Haitanensis(Rhodophyta)at different life-history stages1[J]. Journal of Phycology, 2012, 48(4):1040-1044.
doi: 10.1111/jpy.2012.48.issue-4 URL |
[19] |
Ji NJ, Li L, Lin LX, et al. Screening for suitable reference genes for quantitative real-time PCR in Heterosigma akashiwo(Raphidophyceae)[J]. PLoS One, 2015, 10(7):e0132183.
doi: 10.1371/journal.pone.0132183 URL |
[20] | Deng YY, Hu ZX, Ma ZP, et al. Validation of reference genes for gene expression studies in the dinoflagellate Akashiwo sanguinea by quantitative real-time RT-PCR[J]. Acta Oceanologica Sinica, 2016, 35(8):106-112. |
[21] |
Saito H, Xue C, Yamashiro R, et al. High polyunsaturated fatty acid levels in two subtropical macroalgae, Cladosiphon okamuranus and Caulerpa lentillifera.[J]. Journal of Phycology, 2010, 46(4):665-673.
doi: 10.1111/j.1529-8817.2010.00848.x URL |
[22] |
Niwano Y, Beppu F, Shimada T, et al. Extensive screening for plant foodstuffs in Okinawa, Japan with anti-obese activity on adipocytes in vitro[J]. Plant Foods for Human Nutrition, 2009, 64(1):6-10.
doi: 10.1007/s11130-008-0102-z URL |
[23] | 邢诒炫, 曾俊, 吴翔宇, 等. 三种热带经济海藻养殖现状与应用前景[J]. 海洋湖沼通报, 2019(6):112-120. |
Xing ZX, Zeng J, Wu XY, et al. Cultivation status and application prospect of three tropical economic eeaweeds[J]. Transactions of Oceanology and Limnology, 2019(6):112-120. | |
[24] | 周文川, 赵秋龙, 雷美华, 等. 光照等环境因子对长茎葡萄蕨藻生长的影响[J]. 海洋与渔业, 2017(6):70-72. |
Zhou WC, Zhao QL, Lei MH, et al. Effects of light and other environmental factors on the growth of Caulerpa lentillifera[J]. Ocean And Fishery, 2017(6):70-72. | |
[25] | 苏醒. 两种底栖海藻的光强适应性及其高光胁迫应答研究[D]. 海口:海南大学, 2017. |
Su X. Studies on light intensity adaptability and high light stress response of two benthic seaweeds[D]. Haikou:Hainan University, 2017. | |
[26] |
Quackenbush J. Microarray data normalization and transformation[J]. Nature Genetics, 2002, 32:496-501.
doi: 10.1038/ng1032 URL |
[27] |
Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits[J]. Journal of Biotechnology, 1999, 75(2-3):291-295.
pmid: 10617337 |
[28] | Dheda K. Validation of housekeeping genes for normalizing RNA expression in real-time PCR[J]. Biotechniques, 2004, 37(1):118-119. |
[29] |
Remans T, Smeets K, Opdenakker K, et al. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations[J]. Planta, 2008, 227(6):1343-1349.
doi: 10.1007/s00425-008-0706-4 pmid: 18273637 |
[30] | He YH, Yan HL, Hua WP, et al. Selection and validation of reference genes for quantitative real-time PCR in gentiana macrophylla[J]. Frontiers in Plant Science, 2016, 7:945. |
[31] | 邵惠. 条斑紫菜(Pyropia/Porphyra yezoensis)实时荧光定量PCR内参基因的筛选[D]. 青岛:中国海洋大学, 2012. |
Shao H. Screening of reference genes for real-time fluorescent quantitative PCR of Porphyra yezoensis[D]. Qingdao:Ocean University of China, 2012. | |
[32] | 娄素琳, 林鑫, 黄思敏, 等. 莱茵衣藻CrDRBs基因的克隆和生物信息学分析[J]. 深圳大学学报:理工版, 2018, 35(5):87-92. |
Lou SL, Lin X, Huang SM, et al. Cloning and bioinformatics analysis of CrDRBs in Chlamydomonas reinhardtii[J]. Journal of Shenzhen University:Science and Engineering, 2018, 35(5):87-92. | |
[33] | 张计育, 黄胜男, 王涛, 等. 金魁猕猴桃RT-qPCR内参基因的筛选[J]. 上海农业学报, 2018, 34(1):84-88. |
Zhang JY, Huang SN, Wang T, et al. Screening of reference genes for reverse transcription quantitative real - time PCR in Actinidia deliciosa[J]. Journal of Shanghai Agriculture, 2018, 34(1):84-88. | |
[34] | Chen H, He XH, Luo C, et al. Cloning and expression of longan carbonic anhydrase gene under low temperature stress[J]. Acta Horticulturae Sinica, 2012, 39(2):243-252. |
[35] |
Liu CL, Wu GT, Huang XH, et al. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation[J]. Extremophiles, 2012, 16(3):419-425.
doi: 10.1007/s00792-012-0441-4 URL |
[36] |
Kim H, Saha P, Farcuh M, et al. RNA-Seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums[J]. Plant Molecular Biology Reporter, 2015, 33(6):1634-1649.
doi: 10.1007/s11105-015-0860-3 URL |
[37] | Wang LJ, Wang YC, Zhou P. Validation of reference genes for quantitative real-time PCR during Chinese wolfberry fruit development[J]. Plant Physiology & Biochemistry, 2013, 70:304-310. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[6] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[7] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[8] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[9] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[10] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[11] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[12] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[13] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[14] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[15] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||