生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 151-159.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0368
张浩1,2(), 张亚楠1,2, 李鑫1,2, 王佳美1,2, 王永1(), 朱江江1, 熊燕1,2, 林亚秋1,2()
收稿日期:
2021-03-22
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
张浩,男,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail: 基金资助:
ZHANG Hao1,2(), ZHANG Ya-nan1,2, LI Xin1,2, WANG Jia-mei1,2, WANG Yong1(), ZHU Jiang-jiang1, XIONG Yan1,2, LIN Ya-qiu1,2()
Received:
2021-03-22
Published:
2021-12-26
Online:
2022-01-19
摘要:
旨在克隆获得山羊PDK4基因序列,明确其组织细胞表达特性,并明晰其对山羊肌内脂肪细胞脂代谢的作用。构建山羊PDK4过表达和干扰细胞模型,利用RT-PCR、实时荧光定量 PCR等研究PDK4对山羊肌内脂肪细胞脂代谢的影响。结果克隆获得山羊PDK4基因序列,长度为1 808 bp,定位于线粒体和细胞质。明确了山羊PDK4组织及细胞时序表达模式,发现PDK4高表达于山羊肺脏、臂三头肌和肝脏组织(P<0.01);在诱导分化5 d的山羊肌内脂肪细胞中表达水平极显著高于诱导分化之前的表达水平(P<0.01)。干扰和过表达山羊PDK4分别显著降低和增加了脂质积聚,且干扰PDK4后脂代谢相关基因FABP3、CD36、ACACA、AGPAT6和ADRP表达水平均显著(P<0.05)或极显著(P<0.01)降低,而过表达PDK4后表达水平极显著升高(P<0.01)。PDK4在山羊各组织及肌内前体脂肪细胞分化各个阶段均存在表达。过表达山羊PDK4促进了脂肪细胞脂滴累积和脂质沉积相关基因表达上调,干扰后呈相反的趋势和表达。
张浩, 张亚楠, 李鑫, 王佳美, 王永, 朱江江, 熊燕, 林亚秋. PDK4对山羊肌内脂肪细胞脂代谢的影响[J]. 生物技术通报, 2021, 37(12): 151-159.
ZHANG Hao, ZHANG Ya-nan, LI Xin, WANG Jia-mei, WANG Yong, ZHU Jiang-jiang, XIONG Yan, LIN Ya-qiu. Effect of PDK4 on the Lipid Metabolism of Goat Intramuscular Adipocytes[J]. Biotechnology Bulletin, 2021, 37(12): 151-159.
基因 Gene | 登录号 GenBank | 退火温度 Annealing temperature/℃ | 序列 Primer sequence(5'-3') | 产物长度 Product length/bp | 用途 Purpose |
---|---|---|---|---|---|
PDK4 | NM_001101883.1 | 60 | S:GAGTCTCAAGCCACCTACGG | 1 806 | PCR |
A:TGACATCAATCAGTGGCCTAA | |||||
PDK4 | MF564045.1 | 53 | S:ACCTCTTTTGCATTTTTGCG | 111 | qPCR |
A:TTTGGTCCTCTGGGCTTTTC | |||||
TBP | XM_018053502.1 | 60 | S:AACAGCCTCCCACCTTATGC | 155 | qPCR |
A:TGCTGCTCCTCCAAAATAGAC | |||||
CD36 | X91503 | 60 | S:GTACAGATGCAGCCTCATTTCC | 81 | qPCR |
A:TGGACCTGCAAATATCAGAGGA | |||||
FABP3 | NM_174313.2 | 58 | S:GATGAGACCACGGCAGATG | 120 | qPCR |
A:GTCAACTATTTCCCGCACAAG | |||||
AGPAT6 | JI861797.1 XM_018041984.1 | 60 | S:AAGCAAGTTGCCCATCCTCA | 101 | qPCR |
A:AAACTGTGGCTCCAATTTCGA | |||||
ADRP | HQ846827 NM_001285596.1 | 60 | S:TACGATGATACAGATGAATCCCAC | 202 | qPCR |
A:CAGCATTGCGAAGCACAGAGT | |||||
ATGL | GQ918145 | 60 | S:GGAGCTTATCCAGGCCAATG | 180 | qPCR |
A:TGCGGGCAGATGTCACTCT | |||||
UXT | NM_001037471 | 60 | S:CAGCTGGCCAAATACCTTCAA | 125 | qPCR |
A:GTGTCTGGGACCACTGTGTCAA |
表1 引物信息
Table 1 Primer information
基因 Gene | 登录号 GenBank | 退火温度 Annealing temperature/℃ | 序列 Primer sequence(5'-3') | 产物长度 Product length/bp | 用途 Purpose |
---|---|---|---|---|---|
PDK4 | NM_001101883.1 | 60 | S:GAGTCTCAAGCCACCTACGG | 1 806 | PCR |
A:TGACATCAATCAGTGGCCTAA | |||||
PDK4 | MF564045.1 | 53 | S:ACCTCTTTTGCATTTTTGCG | 111 | qPCR |
A:TTTGGTCCTCTGGGCTTTTC | |||||
TBP | XM_018053502.1 | 60 | S:AACAGCCTCCCACCTTATGC | 155 | qPCR |
A:TGCTGCTCCTCCAAAATAGAC | |||||
CD36 | X91503 | 60 | S:GTACAGATGCAGCCTCATTTCC | 81 | qPCR |
A:TGGACCTGCAAATATCAGAGGA | |||||
FABP3 | NM_174313.2 | 58 | S:GATGAGACCACGGCAGATG | 120 | qPCR |
A:GTCAACTATTTCCCGCACAAG | |||||
AGPAT6 | JI861797.1 XM_018041984.1 | 60 | S:AAGCAAGTTGCCCATCCTCA | 101 | qPCR |
A:AAACTGTGGCTCCAATTTCGA | |||||
ADRP | HQ846827 NM_001285596.1 | 60 | S:TACGATGATACAGATGAATCCCAC | 202 | qPCR |
A:CAGCATTGCGAAGCACAGAGT | |||||
ATGL | GQ918145 | 60 | S:GGAGCTTATCCAGGCCAATG | 180 | qPCR |
A:TGCGGGCAGATGTCACTCT | |||||
UXT | NM_001037471 | 60 | S:CAGCTGGCCAAATACCTTCAA | 125 | qPCR |
A:GTGTCTGGGACCACTGTGTCAA |
图1 山羊PDK4序列分析 A:PDK4序列及编码氨基酸信息;B:PDK4结构域预测;C:PDK4二级结构预测;D:PDK4互作蛋白预测
Fig. 1 Sequence analysis of goat PDK4 A:Information of PDK4 sequence and coding amino acid. B:Prediction of PDK4 domain. C:Prediction of PDK4 secondary structure. D:Prediction of PDK4 interaction protein
[1] | 郭秀兰, 唐仁勇, 刘达玉, 等. 肌内脂肪对猪肉品质的影响及其营养调控作用[J]. 中国畜牧兽医, 2011, 38(5):214-217. |
Guo XL, Tang RY, Liu DY, et al. Effect of intramuscular fat on pork quality and dietary nutritional regulation for improving intramuscular fat[J]. China Animal Husb Vet Med, 2011, 38(5):214-217. | |
[2] |
Luo LP, Liu ML. Adipose tissue in control of metabolism[J]. J Endocrinol, 2016, 231(3):R77-R99.
doi: 10.1530/JOE-16-0211 URL |
[3] | Zhang S, Hulver MW, McMillan RP, et al. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility[J]. Nutr Metab(Lond), 2014, 11(1):10. |
[4] |
Buck MJ, Squire TL, Andrews MT. Coordinate expression of the PDK4 gene:a means of regulating fuel selection in a hibernating mammal[J]. Physiol Genom, 2002, 8(1):5-13.
doi: 10.1152/physiolgenomics.00076.2001 URL |
[5] |
Holness MJ, Bulmer K, Smith ND, et al. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone[J]. Biochem J, 2003, 369(Pt 3):687-695.
pmid: 12435272 |
[6] |
Pilegaard H, Neufer PD. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise[J]. Proc Nutr Soc, 2004, 63(2):221-226.
doi: 10.1079/PNS2004345 URL |
[7] |
Lee D, Pagire HS, Pagire SH, et al. Discovery of novel pyruvate dehydrogenase kinase 4 inhibitors for potential oral treatment of metabolic diseases[J]. J Med Chem, 2019, 62(2):575-588.
doi: 10.1021/acs.jmedchem.8b01168 URL |
[8] | 章琳俐, 李丽, 朱志明, 等. 基于RNA-seq鉴定连城白鸭肉质风味相关候选基因[J]. 农业生物技术学报, 2021, 29(4):711-722. |
Zhang LL, Li L, Zhu ZM, et al. Identification of candidate genes related to meat flavor in Liancheng white duck(Anas platyrhynchos)based on RNA-seq[J]. J Agric Biotechnol, 2021, 29(4):711-722. | |
[9] |
Yamaguchi S, Moseley AC, Almeda-Valdes P, et al. Diurnal variation in PDK4 expression is associated with plasma free fatty acid availability in people[J]. J Clin Endocrinol Metab, 2018, 103(3):1068-1076.
doi: 10.1210/jc.2017-02230 pmid: 29294006 |
[10] |
Newhardt MF, Batushansky A, Matsuzaki S, et al. Enhancing cardiac glycolysis causes an increase in PDK4 content in response to short-term high-fat diet[J]. J Biol Chem, 2019, 294(45):16831-16845.
doi: 10.1074/jbc.RA119.010371 pmid: 31562244 |
[11] | 潘鹏丞, 温斌华, 谢婉, 等. 陆川猪PDK4基因序列分析、真核表达载体构建及组织表达分析[J]. 中国畜牧兽医, 2020, 47(8):2337-2347. |
Pan PC, Wen BH, Xie W, et al. Sequence analysis, eukaryotic expression vector construction and tissue expression analysis of PDK4 gene in Luchuan pigs[J]. China Animal Husb Vet Med, 2020, 47(8):2337-2347. | |
[12] |
Zhang L, Zhou Y, Wu W, et al. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs[J]. Int J Biol Sci, 2017, 13(9):1152-1162.
doi: 10.7150/ijbs.20132 pmid: 29104506 |
[13] |
Xu J, Wang C, Jin E, et al. Identification of differentially expressed genes in longissimus dorsi muscle between Wei and Yorkshire pigs using RNA sequencing[J]. Genes Genomics, 2018, 40(4):413-421.
doi: 10.1007/s13258-017-0643-3 URL |
[14] | 林亚秋, 廖红海, 贺庆华, 等. 山羊FTO基因克隆及其表达谱[J]. 畜牧兽医学报, 2016, 47(5):888-898. |
Lin YQ, Liao HH, He QH, et al. Cloning and expression profiling of FTO gene of goat[J]. Chin J Animal Vet Sci, 2016, 47(5):888-898. | |
[15] |
Chen G, Howe AG, Xu G, et al. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization[J]. FASEB J, 2011, 25(12):4531-4539.
doi: 10.1096/fsb2.v25.12 URL |
[16] | 张榕婧, 何小梅, 闫景旭, 等. 鸡PDK4基因的组织表达分析[J]. 广东农业科学, 2014, 41(15):121-125. |
Zhang RJ, He XM, Yan JX, et al. Tissue expression of pyruvate dehydrogenase kinase 4 gene in broilers[J]. Guangdong Agric Sci, 2014, 41(15):121-125. | |
[17] |
Bowker-Kinley MM, Davis IW, Wu PF, et al. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex[J]. Biochem J, 1998, 329(1):191-196.
doi: 10.1042/bj3290191 URL |
[18] | 田家伟. 猪PDK4基因启动子的克隆及其活性分析[D]. 重庆:西南大学, 2012. |
Tian JW. Cloning and activity analysis of pig pyruvate dehydrogenase kinase 4(PDK4)gene promoter[D]. Chongqing:Southwest University, 2012. | |
[19] | 杨洋, 许厚强, 陈伟, 等. 贵州从江香猪PDK4、FGF10基因的克隆及组织表达分析[J]. 中国畜牧兽医, 2017, 44(12):3401-3409. |
Yang Y, Xu HQ, Chen W, et al. Cloning and tissue expression analysis of PDK4 and FGF10 genes in Guizhou Congjiang Xiang pig[J]. China Animal Husb Vet Med, 2017, 44(12):3401-3409. | |
[20] | 瞿秋红, 夏琴, 崔悦悦, 等. 巴马香猪和杜长大猪的PDK4基因的克隆及组织表达分析[J]. 基因组学与应用生物学, 2020, 39(3):1013-1019. |
Qu QH, Xia Q, Cui YY, et al. Cloning and tissue expression analysis of PDK4 genes in Bama Xiang pig and DLY pig[J]. Genom Appl Biol, 2020, 39(3):1013-1019. | |
[21] | 奚子英, 何小梅, 陈刚, 等. 鸡PDK4基因的克隆及组织差异表达研究[J]. 中国家禽, 2015, 37(15):6-10. |
Xi ZY, He XM, Chen G, et al. Cloning and tissue differential expression analysis of chicken PDK4 gene[J]. China Poult, 2015, 37(15):6-10. | |
[22] | 张罕星, 朱晓彤, 束刚, 等. 猪肌内脂肪前体细胞与皮下脂肪前体细胞分化过程中基因差异表达分析[J]. 中国农业科学, 2008, 41(11):3760-3768. |
Zhang HX, Zhu XT, Shu G, et al. Differential mRNA expression profiles of porcine intramuscular preadipocytes compared with subcutaneous preadipocytes during differentiation[J]. Sci Agric Sin, 2008, 41(11):3760-3768. | |
[23] |
Schafer C, Young ZT, Makarewich CA, et al. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice[J]. J Biol Chem, 2018, 293(18):6915-6924.
doi: 10.1074/jbc.RA117.000268 URL |
[24] |
Sarsenbayeva A, Marques-Santos CM, Thombare K, et al. Effects of second-generation antipsychotics on human subcutaneous adipose tissue metabolism[J]. Psychoneuroendocrinology, 2019, 110:104445.
doi: S0306-4530(19)30482-2 pmid: 31563732 |
[25] |
Chmurzyńska A. The multigene family of fatty acid-binding proteins(FABPs):function, structure and polymorphism[J]. J Appl Genet, 2006, 47(1):39-48.
pmid: 16424607 |
[26] |
Gerbens F, Verburg FJ, Van Moerkerk HT, et al. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs[J]. J Anim Sci, 2001, 79(2):347-354.
pmid: 11219443 |
[27] |
Adhikari S, Erol E, Binas B. Increased glucose oxidation in H-FABP null soleus muscle is associated with defective triacylglycerol accumulation and mobilization, but not with the defect of exogenous fatty acid oxidation[J]. Mol Cell Biochem, 2007, 296(1/2):59-67.
doi: 10.1007/s11010-006-9298-0 URL |
[28] | 梁梦瑶, 高学军, 李庆章, 等. 脂肪酸结合蛋白3在乳脂合成信号转导通路中的研究进展[J]. 中国畜牧兽医, 2013, 40(12):116-120. |
Liang MY, Gao XJ, Li QZ, et al. Research progress on the milk fat synjournal signal transduction pathway of FABP3[J]. China Animal Husb Vet Med, 2013, 40(12):116-120. | |
[29] |
Zhao L, Zhang C, Luo X, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol, 2018, 69(3):705-717.
doi: S0168-8278(18)32014-2 pmid: 29705240 |
[30] |
Bionaz M, Loor JJ. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation[J]. J Nutr, 2008, 138(6):1019-1024.
doi: 10.1093/jn/138.6.1019 URL |
[31] |
Chen YQ, Kuo MS, Li S, et al. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase[J]. J Biol Chem, 2008, 283(15):10048-10057.
doi: 10.1074/jbc.M708151200 pmid: 18238778 |
[32] |
Littlejohn MD, Tiplady K, Lopdell T, et al. Expression variants of the lipogenic AGPAT6 gene affect diverse milk composition phenotypes in Bos taurus[J]. PLoS One, 2014, 9(1):e85757.
doi: 10.1371/journal.pone.0085757 URL |
[33] |
Vergnes L, Beigneux AP, Davis R, et al. Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity[J]. J Lipid Res, 2006, 47(4):745-754.
doi: 10.1194/jlr.M500553-JLR200 URL |
[34] |
Song S, Huo JL, Li DL, et al. Molecular cloning, sequence characterization, and gene expression profiling of a novel water buffalo(Bubalus bubalis)gene, AGPAT6[J]. Genet Mol Res, 2013, 12(4):4116-4126.
doi: 10.4238/2013.October.1.2 pmid: 24114207 |
[35] | 赵永艳. 脂肪分化相关蛋白(ADRP)基因对猪IMF含量影响的研究[D]. 南京:南京农业大学, 2014. |
Zhao YY. Study on the effect of adipose differentiation related protein gene of porcine IMF content[D]. Nanjing:Nanjing Agricultural University, 2014. | |
[36] | 刘梅芳. 脂肪分化相关蛋白的研究进展[J]. 生理科学进展, 2012, 43(4):241-246. |
Liu MF. The progress of adipose differentiation-related protein[J]. Prog Physiol Sci, 2012, 43(4):241-246. |
[1] | 盛雪晴, 赵楠, 林亚秋, 陈定双, 王瑞龙, 李傲, 王永, 李艳艳. 山羊ZNF32的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 300-311. |
[2] | 党瑗, 李维, 苗向, 修宇, 林善枝. 山杏油体蛋白基因PsOLE4克隆及其调控油脂累积功能分析[J]. 生物技术通报, 2022, 38(11): 151-161. |
[3] | 蒋旭东, 刘宇, 邬建飞, 胡双阁, 卢建远, 字向东. 牦牛FGG组织表达与雌性生殖器官中定位分析[J]. 生物技术通报, 2022, 38(11): 286-294. |
[4] | 张浩, 何长晟, 李艳艳, 王永, 朱江江, 俄木曲者, 林亚秋. miR-301b对山羊肌内脂肪细胞分化的调控作用[J]. 生物技术通报, 2022, 38(10): 254-261. |
[5] | 朱雯, 汤莹莹, 孙昕旸, 周明, 张子军, 陈兴勇. 低蛋白饲粮对山羊肝脏转录组的影响[J]. 生物技术通报, 2021, 37(9): 203-211. |
[6] | 朱晓林, 魏小红, 王宝强, 王贤, 张朝阳. 番茄抗黄叶卷曲病相关基因Ty-6的克隆、序列分析及表达特性[J]. 生物技术通报, 2020, 36(7): 40-47. |
[7] | 张乐超, 刘月琴, 段春辉, 张英杰, 王泳, 郭云霞. 7个地方山羊品种遗传多样性及遗传结构分析[J]. 生物技术通报, 2020, 36(6): 183-190. |
[8] | 李晓凯, 范一星, 乔贤, 张磊, 王凤红, 王志英, 王瑞军, 张燕军, 刘志红, 王志新, 何利兵, 李金泉, 苏蕊, 张家新. 山羊基因组与遗传变异图谱研究进展[J]. 生物技术通报, 2020, 36(4): 175-184. |
[9] | 宋绍征, 陆睿, 张婷, 何正义, 吴赵曼秋, 成勇, 周鸣鸣. CRISPR /Cas9基因编辑技术在山羊和绵羊中的应用研究进展[J]. 生物技术通报, 2020, 36(3): 62-68. |
[10] | 周敏雅, 陆睿, 张婷, 袁婷婷, 卢瑶瑶, 严坤宁, 袁玉国, 成勇. 重组人SOD1/3转基因山羊的制备及表达产物的检测[J]. 生物技术通报, 2019, 35(5): 85-92. |
[11] | 石佳, 杨丹丹 ,葛慧雯 ,杜京尧 ,梁卫红. 水稻OsMPK15的cDNA克隆和转录水平分析[J]. 生物技术通报, 2018, 34(6): 66-72. |
[12] | 乃门塔娜,张燕军,刘东军,李金泉. HFSC标记在阿尔巴斯绒山羊毛囊及毛囊干细胞中的表达[J]. 生物技术通报, 2018, 34(5): 201-205. |
[13] | 陈静, 张道伟, 钱正敏. 白背飞虱几丁质合成酶1基因的结构及特性研究[J]. 生物技术通报, 2018, 34(1): 195-201. |
[14] | 贾启鹏,申培磊,张欢,张勇. CRISPR/Cas9系统介导敲除CSN2基因奶山羊胎儿成纤维突变细胞的制备[J]. 生物技术通报, 2017, 33(9): 131-138. |
[15] | 郑杰,刘霜,罗斌,胡亮,杨珂伟,字向东. 山羊MSH4和MSH5基因的cDNA克隆、序列分析及组织表达[J]. 生物技术通报, 2016, 32(3): 98-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||