生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 278-286.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1238
牛宇辉1,2(), 李向茸1, 吴贝1,2, 李洪珊1,2, 李殿玉1,2, 陈磊1,2, 魏锁成2(
), 冯若飞1(
)
收稿日期:
2021-09-27
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
牛宇辉,男,硕士研究生,研究方向:病原生物学与基因工程;E-mail: 基金资助:
NIU Yu-hui1,2(), LI Xiang-rong1, WU Bei1,2, LI Hong-shan1,2, LI Dian-yu1,2, CHEN Lei1,2, WEI Suo-cheng2(
), FENG Ruo-fei1(
)
Received:
2021-09-27
Published:
2022-07-26
Online:
2022-08-09
摘要:
目前,悬浮CHO细胞作为外源蛋白的最有潜力的工程细胞株被广泛应用,探索其高密度生长和高表达外源蛋白的培养条件也成为研究的热点。葡萄糖和丁酸钠在促进CHO细胞生长和外源蛋白表达方面具有重要作用,所以研究葡萄糖和丁酸钠对CHO-rHSA工程细胞表达重组人血清白蛋白的影响有重要的应用价值。首先利用单因素试验确定了葡萄糖和丁酸钠对CHO-rHSA工程细胞表达重组人血清白蛋白的作用,并筛选出最优添加条件;然后利用双因素组合作用试验优选出可有效提高rHSA表达量的葡萄糖及丁酸钠的组合培养条件。细胞培养第3天开始,每48 h添加终浓度为7 g/L的葡萄糖,可使rHSA产量平均提高121.93%;细胞培养第2天添加终浓度为1.0 mmoL/L的丁酸钠,可使rHSA产量平均提高110.01%;丁酸钠和葡萄糖组合使用可使CHO-rHSA工程细胞株培养时间从7 d左右延长到14 d左右,使rHSA表达量达平均达到了85.642 mg/L,rHSA表达量与未处理组相比平均提高了212.49%,比单独使用葡萄糖平均提高了134.85%,比单独使用丁酸钠平均提高了88.35%。确定待细胞培养48 h 时添加1.0 mmol/L 丁酸钠和3.0→7.0 g/L葡萄糖为CHO工程细胞株高效表达的培养条件。丁酸钠和葡萄糖组合使用可更高效的表达外源蛋白,葡萄糖可以减弱丁酸钠对CHO细胞生长的抑制作用,为提高CHO工程细胞株外源蛋白表达提供新的理论依据。
牛宇辉, 李向茸, 吴贝, 李洪珊, 李殿玉, 陈磊, 魏锁成, 冯若飞. 葡萄糖和丁酸钠对CHO-rHSA工程细胞株中rHSA产量的影响[J]. 生物技术通报, 2022, 38(7): 278-286.
NIU Yu-hui, LI Xiang-rong, WU Bei, LI Hong-shan, LI Dian-yu, CHEN Lei, WEI Suo-cheng, FENG Ruo-fei. Effects of Glucose and Sodium Butyrate on the rHSA Yield in CHO-rHSA Engineering Cell Line[J]. Biotechnology Bulletin, 2022, 38(7): 278-286.
补糖策略 Glucose supplement strategies/(g·L-1) | 补糖前葡萄糖含量 Glucose content in the medium before supplementing glucose/(g·L-1) | 补糖后葡萄糖含量 Glucose content in the medium after supplementing glucose /(g·L-1) |
---|---|---|
2.0→5.0 | 2.0 | 5.0 |
2.0→7.0 | 2.0 | 7.0 |
3.0→5.0 | 3.0 | 5.0 |
3.0→7.0 | 3.0 | 7.0 |
表1 不同的补糖策略
Table 1 Different strategies for supplementing glucose
补糖策略 Glucose supplement strategies/(g·L-1) | 补糖前葡萄糖含量 Glucose content in the medium before supplementing glucose/(g·L-1) | 补糖后葡萄糖含量 Glucose content in the medium after supplementing glucose /(g·L-1) |
---|---|---|
2.0→5.0 | 2.0 | 5.0 |
2.0→7.0 | 2.0 | 7.0 |
3.0→5.0 | 3.0 | 5.0 |
3.0→7.0 | 3.0 | 7.0 |
图1 不同的补糖策略对CHO-rHSA细胞生长及rHSA产量的影响 A:活细胞密度;B:细胞活力;C:葡萄糖浓度;D:ELISA检测rHSA表达量(**P <0.01)
Fig.1 Effects of different glucose supplementation strategies on the growth of CHO-rHSA cells and the yield of rHSA A:Viable cell density. B:Viability. C:Glucose concentration. D:The productivity of rHSA was detected by ELISA(**P<0.01)
图2 不同浓度丁酸钠对CHO-rHSA细胞生长及rHSA产量的影响 A:活细胞密度;B:细胞活力;C:葡萄糖浓度;D:Western blot分析rHSA的表达(Sd:标准品浓度100 mg/L);E:灰度分析rHSA的相对表达量;F:ELISA检测rHSA表达量(*P <0.05)
Fig.2 Effects of different concentrations of sodium butyrate on the growth of CHO-rHSA cells and the yield of rHSA A:Viable cell density. B:Viability. C:Glucose concentration. D:The protein expression of rHSA was detected by Western blot(Sd:Standard concentration 100 mg/L). E:The relative expression level of rHSA was detected by gray analysis. F:The productivity of rHSA was detected by ELISA(*P<0.05)
图3 葡萄糖及丁酸钠组合培养对CHO-rHSA细胞生长及rHSA产量的影响 A:活细胞密度(①:3.0→5.0 g/L;②:3.0→7.0 g/L);B:细胞活力;C:葡萄糖浓度;D:Western blot分析rHSA的表达(Sd:标准品浓度100 mg/L);E:灰度分析rHSA的相对表达量;F:ELISA检测rHSA表达量(***P <0.001)
Fig.3 Effects of combined culture of glucose and sodium butyrate on the growth of CHO-rHSA cells and the yield of rHSA A:Viable cell density(①:3.0→5.0 g/L. ②:3.0→7.0 g/L). B:Viability. C:Glucose concentration. D:The protein expression of rHSA was detected by Western blot(Sd:standard concentration 100 mg/L). E:The relative expression level of rHSA was detected by gray analysis. F:The productivity of rHSA was detected by ELISA(***P<0.001)
图4 不同时间段添加丁酸钠对CHO-rHSA细胞生长及rHSA产量的影响 A:活细胞密度;B:细胞活力;C:葡萄糖浓度;D:ELISA检测rHSA表达量(*P <0.05)
Fig.4 Effect of adding time of sodium butyrate on the growth of CHO-rHSA cells and the yield of rHSA A:Viable cell density. B:Viability. C:Glucose concentration. D:The productivity of rHSA was detected by ELISA(*P<0.05)
[1] |
Cieplak M, Szwabinska K, Sosnowska M, et al. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting[J]. Biosens Bioelectron, 2015, 74:960-966.
doi: 10.1016/j.bios.2015.07.061 pmid: 26258876 |
[2] |
Manjushree M, Revanasiddappa HD. Evaluation of binding mode between anticancer drug etoposide and human serum albumin by numerous spectrometric techniques and molecular docking[J]. Chem Phys, 2020, 530:110593.
doi: 10.1016/j.chemphys.2019.110593 URL |
[3] |
Liu TT, Liu M, Guo QY, et al. Investigation of binary and ternary systems of human serum albumin with oxyresveratrol/piceatannol and/or mitoxantrone by multipectroscopy, molecular docking and cytotoxicity evaluation[J]. J Mol Liq, 2020, 311:113364.
doi: 10.1016/j.molliq.2020.113364 URL |
[4] |
Chugh H, Kumar P, Tomar V, et al. Interaction of noscapine with human serum albumin(HSA):a spectroscopic and molecular modelling approach[J]. J Photochem Photobiol A:Chem, 2019, 372:168-176.
doi: 10.1016/j.jphotochem.2018.12.001 URL |
[5] |
Khan IM, Shakya S, Akhtar R, et al. Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2-hydroxypyridine and oxalic acid with human serum albumin:Single crystal, spectrophotometric, theoretical and antimicrobial studies[J]. Bioorg Chem, 2020, 100:103872.
doi: 10.1016/j.bioorg.2020.103872 URL |
[6] | 余谦, 王勇, 钱小红, 等. 一种转基因猪血中重组人血清白蛋白分离纯化新方法[J]. 分析测试学报, 2019, 38(5):539-545. |
Yu Q, Wang Y, Qian XH, et al. A novel method for purification of the recombinant human serum albumin from transgenic pig plasma[J]. J Instrum Anal, 2019, 38(5):539-545. | |
[7] | 马海燕, 王世聪, 郄正刚. 重组人血白蛋白在药用辅料中的应用[J]. 中国生物制品学杂志, 2014, 27(10):1359-1360. |
Ma HY,Wang SC, (Qie|Xi) ZG. Application of recombinant human albumin in pharmaceutical excipients[J]. Chin J Biol, 2014, 27(10):1359-1360. | |
[8] | 李向茸. 重组人血清白蛋白制备及双抗体夹心ELISA方法的建立[D]. 兰州: 西北民族大学, 2014. |
Li XR. Preparation of recombinant human serum albuminand establishment of double-antibody sandwich ELISA method[D]. Lanzhou: Northwest Minzu University, 2014. | |
[9] | 刘涛燕, 崔魏, 李弘夏, 等. 重组人血清白蛋白体外诱导干细胞向心肌细胞的分化[J]. 中国胸心血管外科临床杂志, 2018, 25(7):604-609. |
Liu TY, Cui W, Li HX, et al. Recombinant human serum albumin promotes differentiation of human pluripotent stem cells into cardiomyocytes in vitro[J]. Chin J Clin Thorac Cardiovasc Surg, 2018, 25(7):604-609. | |
[10] |
杨柳, 陈晨, 韩超, 等. 植物源重组人血清白蛋白对BALB/c小鼠的致敏性评价[J]. 卫生研究, 2020, 49(3):463-466.
pmid: 32693898 |
Yang L, Chen C, Han C, et al. Assessment of allergenicity of Oryza sativa recombinant human serum albumin in BALB/c mice[J]. J Hyg Res, 2020, 49(3):463-466.
doi: 10. 19813/j. cnki. weishengyanjiu. 2020. 03. 020 pmid: 32693898 |
|
[11] | 许人仁. 重组人血清白蛋白的发酵及纯化工艺研究[D]. 上海: 中国医药工业研究总院, 2020. |
Xu RR. Fermentation and purification technology of recombinant human serum albumin[D]. Shanghai: China State Institute of Pharmaceutical Industry, 2020. | |
[12] | 沈丽娟. 基于质量源于设计的CHO细胞培养过程优化和代谢特征研究[D]. 杭州: 浙江大学, 2018. |
Shen LJ. Optimization and metabolic characteristics of CHO cell culture process using quality by design principles[D]. Hangzhou: Zhejiang University, 2018. | |
[13] | 李活孙. 丁酸钠对CHO细胞生长及rhEPO表达量的影响[J]. 海峡药学, 2019, 31(2):39-41. |
Li HS. The effect of sodium butyrate on the growth of CHO cells and the expression of rhEPO[J]. Strait Pharm J, 2019, 31(2):39-41. | |
[14] | 马军, 董艳秋, 邹珉, 等. 丁酸钠和丙酸钠对工程CHO细胞生长代谢和嵌合抗体表达的影响[J]. 中国生物工程杂志, 2005, 25(10):12-16. |
Ma J, Dong YQ, Zou M, et al. Effect of sodium butyrate and propionate on cell growth, metabolism and expression of the chimeric antibody[J]. Prog Biotechnol, 2005, 25(10):12-16. | |
[15] | 孙健. 丁酸钠对IPEC-J2细胞抗菌肽PR-39 mRNA表达的影响[J]. 养殖与饲料, 2020, 19(12):51-54. |
Sun J. Effect of sodium butyrate on the expression of antimicrobial peptide PR-39 mRNA in IPEC-J2 cells[J]. Animals Breeding and Feed, 2020, 19(12):51-54. | |
[16] | Rodrigues Goulart H, Arthuso Fdos S, Capone MV, et al. Enhancement of human prolactin synthesis by sodium butyrate addition to serum-free CHO cell culture[J]. J Biomed Biotechnol, 2010, 2010:405872. |
[17] | 宋瑞卿, 苏杭, 张玲, 等. 丙戊酸钠和锌离子对CHO工程细胞抗体产量的影响[J]. 中国生物制品学杂志, 2021, 34(7):798-803. |
Song RQ, Su H, Zhang L, et al. Effect of sodium valproate and zinc ion on antibody production in engineered CHO cells[J]. Chinese Journal of Biologicals, 2021, 34(7):798-803. | |
[18] | 姜恒, 韩威, 刘彦华, 等. 热乙醇法提取猪血白蛋白工艺改良的探讨[J]. 西南国防医药, 2011, 21(11):1167-1169. |
Jiang H, Han W, Liu YH, et al. Technological improvement in heat ethanol fractionation of albumin in porcine serum[J]. Med J Natl Defending Forces Southwest China, 2011, 21(11):1167-1169. | |
[19] | 李辰雨. 毕赤氏酵母发酵液中重组人血清白蛋白分离纯化工艺的初步研究[D]. 烟台: 烟台大学, 2016. |
Li CY. Preliminary study on separation and purification of recombinant human serum albumin from the fermentation broth of Pichia pastoris[D]. Yantai: Yantai University, 2016. | |
[20] | 王宗太, 马宁宁. 重组人血白蛋白工业应用研究进展[J]. 中国当代医药, 2017, 24(19):11-14. |
Wang ZT, Ma NN. The pharmaceutical application research progress of industrial production of Human serum albumin[J]. China Mod Med, 2017, 24(19):11-14. | |
[21] | 蔡燕飞, 陈蕴, 金坚. 人血清白蛋白的生物制备工艺优化[J]. 生物学杂志, 2020, 37(3):106-109. |
Cai YF, Chen Y, Jin J. Optimization of biological preparation of human serum albumin[J]. J Biol, 2020, 37(3):106-109. | |
[22] | Wu W, Xiao ZB, An WY, et al. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers[J]. PLoS One, 2018, 13(5):e0197762. |
[23] |
Sikandar A, Zaneb H, Younus M, et al. Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens[J]. Asian-Australas J Anim Sci, 2017, 30(5):690-699.
doi: 10.5713/ajas.16.0824 URL |
[24] |
Makled MN, Abouelezz KFM, Gad-Elkareem AEG, et al. Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens[J]. Trop Anim Health Prod, 2019, 51(8):2333-2342.
doi: 10.1007/s11250-019-01945-8 pmid: 31168683 |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[3] | 高凯月, 郭雨婷, 杜奕谋, 郑小梅, 马欣荣, 赵伟, 郑平, 孙际宾. 黑曲霉葡萄糖吸收定量检测的方法建立及其在MstC功能研究中的应用[J]. 生物技术通报, 2023, 39(12): 71-80. |
[4] | 张君, 张虹, 张芮, 路国栋, 雍婧姣, 郎思睿, 陈任. 甜菊醇糖苷生物合成关键基因的导入和鉴定分析[J]. 生物技术通报, 2023, 39(1): 214-223. |
[5] | 张国宁, 冯婧娴, 杨颖博, 陈万生, 肖莹. 环糊精葡萄糖基转移酶在天然产物糖基化修饰中的应用[J]. 生物技术通报, 2022, 38(3): 246-255. |
[6] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[7] | 廖兆民, 蔡俊, 林建国, 杜馨, 王常高. 黑曲霉葡萄糖氧化酶基因在毕赤酵母中的表达及产酶条件的优化[J]. 生物技术通报, 2021, 37(6): 97-107. |
[8] | 熊亮斌, 孙吉, 刘显舟, 屈占国, 计雨情, 徐一新, 王风清. 分枝杆菌转化甾醇过程的中心代谢关键基因转录差异分析[J]. 生物技术通报, 2021, 37(10): 120-127. |
[9] | 霍明月, 张鸽, 苏玉龙, 李兴, 张海波, 峥嵘, 刘好宝. 一株耐受高浓度葡萄糖且产乙偶姻菌株的筛选及产物鉴定[J]. 生物技术通报, 2020, 36(8): 53-60. |
[10] | 陈桥, 吴海英, 王宗寿, 谢雨康, 李宜青, 孙俊松. 聚羟基丁酸酯合成引发的高密度生长大肠杆菌的多位点突变分析[J]. 生物技术通报, 2020, 36(7): 112-118. |
[11] | 董聪, 高庆华, 王玥, 罗同阳. 基于密码子优化的FAD依赖葡萄糖脱氢酶在毕赤酵母中的高效表达及酶学性质[J]. 生物技术通报, 2019, 35(7): 114-120. |
[12] | 李骥璇, 余磊, 李京美, 郑桂兰, 王洪钟. S-亚胺还原酶和葡萄糖脱氢酶共表达系统的构建及手性胺的合成[J]. 生物技术通报, 2019, 35(1): 105-111. |
[13] | 高庆华, 董聪, 王玥, 胡美荣, 王庆庆, 王云鹏, 罗同阳, 刘蕾. 共表达分子伴侣PDI和Ero1对葡萄糖氧化酶在毕赤酵母中表达的影响[J]. 生物技术通报, 2018, 34(7): 174-179. |
[14] | 李真真, 赵佳晨, 马昱澍. 基于sRNA的氧化葡萄糖酸杆菌基因调控的研究[J]. 生物技术通报, 2018, 34(3): 59-66. |
[15] | 戴晨霞, 曹慧方, 罗会颖, 姚斌, 柏映国, 徐波. 来源于Alicyclobacillus sp.A4葡萄糖异构酶的克隆表达及转化应用研究[J]. 生物技术通报, 2018, 34(11): 144-151. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 318
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 479
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||