生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 128-135.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1322
蒋贤哲1(), 张博彦1, 罗海玲1, 张新盟2, 王炳1()
收稿日期:
2021-10-20
出版日期:
2022-07-26
发布日期:
2022-08-09
通讯作者:
王炳,男,博士,副教授,硕士生导师,研究方向:动物营养与饲料科学;E-mail: wangb@cau.edu.cn作者简介:
蒋贤哲,男,研究方向:动物营养与饲料科学;E-mail: 879650302@qq.com
基金资助:
JIANG Xian-zhe1(), ZHANG Bo-yan1, LUO Hai-ling1, ZHANG Xin-meng2, WANG Bing1()
Received:
2021-10-20
Published:
2022-07-26
Online:
2022-08-09
摘要:
肠肝轴是指肠道微生物与肝脏的之间存在的一种双向关系,是肠道微生物对宿主产生影响的重要途径。越来越多的研究表明,肠肝轴在动物营养代谢和机体免疫方面发挥着重要的调节作用。本文从肠肝轴在肠道微生物与宿主互作中发挥的桥梁作用出发,论述了肠肝轴在动物营养代谢和机体免疫中的两种调控机理:内源性大麻素系统和肠道微生物衍生信号。其中,肠道微生物衍生信号包括短链脂肪酸、胆汁酸、胆碱代谢产物、氨基酸类代谢物以及微生物相关分子模式。最后,探讨了肠肝轴理论在畜牧业生产中的应用前景,以期为无抗背景下的动物健康高效养殖提供支持。
蒋贤哲, 张博彦, 罗海玲, 张新盟, 王炳. 肠肝轴在动物营养代谢和免疫中的作用[J]. 生物技术通报, 2022, 38(7): 128-135.
JIANG Xian-zhe, ZHANG Bo-yan, LUO Hai-ling, ZHANG Xin-meng, WANG Bing. Role of Gut-Liver Axis in Animal Nutritional Metabolism and Immunity[J]. Biotechnology Bulletin, 2022, 38(7): 128-135.
[1] | 胡永飞. 微生物组学研究的“淘金时代”[J]. 微生物学报, 2019, 59(9):1631-1635. |
Hu YF. The “Gold Rush Era” for microbiome research[J]. Acta Microbiol Sin, 2019, 59(9):1631-1635. | |
[2] |
Mirpuri J, Raetz M, Sturge CR, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota[J]. Gut Microbes, 2014, 5(1):28-39.
doi: 10.4161/gmic.26489 pmid: 24637807 |
[3] |
Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut[J]. Mucosal Immunol, 2011, 4(6):603-611.
doi: 10.1038/mi.2011.41 pmid: 21975936 |
[4] |
Abreu MT. Toll-like receptor signalling in the intestinal epithelium:how bacterial recognition shapes intestinal function[J]. Nat Rev Immunol, 2010, 10(2):131-144.
doi: 10.1038/nri2707 URL |
[5] |
Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4):217-225.
doi: 10.1016/j.cmet.2005.09.001 URL |
[6] |
Osei-Hyiaman D, Liu J, Zhou L, et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice[J]. J Clin Invest, 2008, 118(9):3160-3169.
doi: 10.1172/JCI34827 pmid: 18677409 |
[7] |
Ruiz de Azua I, Mancini G, Srivastava RK, et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages[J]. J Clin Invest, 2017, 127(11):4148-4162.
doi: 10.1172/JCI83626 URL |
[8] |
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, et al. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity[J]. Sci Rep, 2017, 7(1):15645.
doi: 10.1038/s41598-017-15154-6 pmid: 29142285 |
[9] |
Liu J, Batkai S, Pacher P, et al. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappaB independently of platelet-activating factor[J]. J Biol Chem, 2003, 278(45):45034-45039.
doi: 10.1074/jbc.M306062200 URL |
[10] |
Artegoitia VM, Foote AP, Lewis RM, et al. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers[J]. J Anim Sci, 2016, 94(12):5177-5181.
doi: 10.2527/jas.2016-1025 pmid: 28046144 |
[11] |
Bradford BJ, Yuan K, Farney JK, et al. Invited review:Inflammation during the transition to lactation:New adventures with an old flame[J]. J Dairy Sci, 2015, 98(10):6631-6650.
doi: 10.3168/jds.2015-9683 pmid: 26210279 |
[12] |
Ringseis R, Gessner D K, Eder K. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows:hypothetical role of endoplasmic reticulum stress[J]. J Anim Physiol An N, 2015, 99(4):626-645.
doi: 10.1111/jpn.12263 pmid: 25319457 |
[13] |
Wong JMW, de Souza R, Kendall CWC, et al. Colonic health:fermentation and short chain fatty acids[J]. J Clin Gastroenterol, 2006, 40(3):235-243.
doi: 10.1097/00004836-200603000-00015 URL |
[14] |
Thangaraju M, Cresci GA, Liu K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon[J]. Cancer Res, 2009, 69(7):2826-2832.
doi: 10.1158/0008-5472.CAN-08-4466 pmid: 19276343 |
[15] |
Aguinaga Casañas MA, Schäff CT, Albrecht E, et al. Short communication:Free fatty acid receptors FFAR1 and FFAR2 during the peripartal period in liver of dairy cows grouped by their postpartum plasma β-hydroxybutyrate concentrations[J]. J Dairy Sci, 2017, 100(4):3287-3292.
doi: S0022-0302(17)30062-0 pmid: 28131568 |
[16] |
Friedrichs P, Sauerwein H, Huber K, et al. Expression of metabolic sensing receptors in adipose tissues of periparturient dairy cows with differing extent of negative energy balance[J]. Animal, 2016, 10(4):623-632.
doi: 10.1017/S175173111500227X pmid: 26556304 |
[17] |
Xiong Y, Miyamoto N, Shibata K, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41[J]. PNAS, 2004, 101(4):1045-1050.
doi: 10.1073/pnas.2637002100 URL |
[18] |
Soliman M, Kimura K, Ahmed M, et al. Inverse regulation of leptin mRNA expression by short- and long-chain fatty acids in cultured bovine adipocytes[J]. Domest Anim Endocrinol, 2007, 33(4):400-409.
doi: 10.1016/j.domaniend.2006.08.005 URL |
[19] |
Lee SH, Hossner KL. Coordinate regulation of ovine adipose tissue gene expression by propionate[J]. J Anim Sci, 2002, 80(11):2840-2849.
pmid: 12462251 |
[20] | Jiao AR, Diao H, Yu B, et al. Oral administration of short chain fatty acids could attenuate fat deposition of pigs[J]. PLoS One, 2018, 13(5):e0196867. |
[21] | Landsberg L. Feast or famine:the sympathetic nervous system response to nutrient intake[J]. Cell Mol Neurobiol, 2006, 26(4/5/6):497-508. |
[22] |
Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41(GPR41)[J]. PNAS, 2011, 108(19):8030-8035.
doi: 10.1073/pnas.1016088108 pmid: 21518883 |
[23] |
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11(10):577-591.
doi: 10.1038/nrendo.2015.128 URL |
[24] |
Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J]. J Biol Chem, 2003, 278(13):11312-11319.
doi: 10.1074/jbc.M211609200 URL |
[25] |
Plöger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract[J]. Ann N Y Acad Sci, 2012, 1258:52-59.
doi: 10.1111/j.1749-6632.2012.06553.x URL |
[26] | Daniel N, Rossi Perazza L, Varin TV, et al. Dietary fat and low fiber in purified diets differently impact the gut-liver axis to promote obesity-linked metabolic impairments[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(6):G1014-G1033. |
[27] |
Trauner M, Boyer JL. Bile salt transporters:molecular characterization, function, and regulation[J]. Physiol Rev, 2003, 83(2):633-671.
doi: 10.1152/physrev.00027.2002 URL |
[28] |
LaRusso NF, Hoffman NE, Korman MG, et al. Determinants of fasting and postprandial serum bile acid levels in healthy man[J]. Am J Dig Dis, 1978, 23(5):385-391.
doi: 10.1007/BF01072919 URL |
[29] |
Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids[J]. Science, 1999, 284(5418):1362-1365.
pmid: 10334992 |
[30] |
Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity[J]. PNAS, 2001, 98(6):3369-3374.
pmid: 11248085 |
[31] |
Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571):1313-1316.
pmid: 12016314 |
[32] |
Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids[J]. J Biol Chem, 2003, 278(11):9435-9440.
doi: 10.1074/jbc.M209706200 pmid: 12524422 |
[33] |
Islam KB, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5):1773-1781.
doi: 10.1053/j.gastro.2011.07.046 URL |
[34] |
Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. PNAS, 2006, 103(10):3920-3925.
doi: 10.1073/pnas.0509592103 URL |
[35] |
Li F, Jiang C, Krausz KW, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity[J]. Nat Commun, 2013, 4:2384.
doi: 10.1038/ncomms3384 URL |
[36] |
Jiang CT, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. J Clin Invest, 2015, 125(1):386-402.
doi: 10.1172/JCI76738 URL |
[37] |
Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host Microbe, 2008, 3(4):213-223.
doi: 10.1016/j.chom.2008.02.015 pmid: 18407065 |
[38] |
Parséus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor[J]. Gut, 2017, 66(3):429-437.
doi: 10.1136/gutjnl-2015-310283 pmid: 26740296 |
[39] |
Rath S, Heidrich B, Pieper DH, et al. Uncovering the trimethylamine-producing bacteria of the human gut microbiota[J]. Microbiome, 2017, 5(1):54.
doi: 10.1186/s40168-017-0271-9 URL |
[40] |
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585.
doi: 10.1038/nm.3145 URL |
[41] |
Gao X, Liu XF, Xu J, et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4):476-481.
doi: 10.1016/j.jbiosc.2014.03.001 URL |
[42] |
Chen YM, Liu Y, Zhou RF, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults[J]. Sci Rep, 2016, 6:19076.
doi: 10.1038/srep19076 URL |
[43] |
Blachier F, Mariotti F, Huneau JF, et al. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences[J]. Amino Acids, 2007, 33(4):547-562.
pmid: 17146590 |
[44] |
Beaumont M, Andriamihaja M, Lan A, et al. Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide:The adaptive response[J]. Free Radic Biol Med, 2016, 93:155-164.
doi: 10.1016/j.freeradbiomed.2016.01.028 URL |
[45] |
Whitfield-Cargile CM, Cohen ND, Chapkin RS, et al. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy[J]. Gut Microbes, 2016, 7(3):246-261.
doi: 10.1080/19490976.2016.1156827 pmid: 27007819 |
[46] | Beaumont M, Neyrinck AM, Olivares M, et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. FASEB J, 2018:fj201800544. |
[47] |
Jenne CN, Kubes P. Immune surveillance by the liver[J]. Nat Immunol, 2013, 14(10):996-1006.
doi: 10.1038/ni.2691 URL |
[48] |
Atif M, Warner S, Oo YH. Linking the gut and liver:crosstalk between regulatory T cells and mucosa-associated invariant T cells[J]. Hepatol Int, 2018, 12(4):305-314.
doi: 10.1007/s12072-018-9882-x URL |
[49] |
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1772.
doi: 10.2337/db06-1491 URL |
[50] |
Ohtaki T, Ogata K, Kajikawa H, et al. Effect of high-concentrate corn grain diet-induced elevated ruminal lipopolysaccharide levels on dairy cow liver function[J]. J Vet Med Sci, 2020, 82(7):971-977.
doi: 10.1292/jvms.20-0117 URL |
[51] | Valente TNP, Sampaio CB, Lima EDS, et al. Aspects of acidosis in ruminants with a focus on nutrition:a review[J]. J Agric Sci, 2017, 9(3):90. |
[52] |
Guo JF, Chang GJ, Zhang K, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet[J]. Oncotarget, 2017, 8(29):46769-46780.
doi: 10.18632/oncotarget.18151 URL |
[53] |
Shen J, Han XY, Zheng LX, et al. High rumen-degradable starch diet promotes hepatic lipolysis and disrupts enterohepatic circulation of bile acids in dairy goats[J]. J Nutr, 2020, 150(10):2755-2763.
doi: 10.1093/jn/nxaa238 URL |
[54] |
Xue CY, Li Y, Lv H, et al. Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis[J]. J Agric Food Chem, 2021, 69(28):7884-7897.
doi: 10.1021/acs.jafc.1c02257 URL |
[55] |
Yan X, Ren XY, Liu XY, et al. Dietary ursolic acid prevents alcohol-induced liver injury via gut-liver axis homeostasis modulation:the key role of microbiome manipulation[J]. J Agric Food Chem, 2021, 69(25):7074-7083.
doi: 10.1021/acs.jafc.1c02362 URL |
[56] |
Mu HN, Zhou Q, Yang RY, et al. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice[J]. Food Res Int, 2021, 143:110240.
doi: 10.1016/j.foodres.2021.110240 URL |
[57] |
Wang B, Luo HL. Effects of mulberry leaf silage on antioxidant and immunomodulatory activity and rumen bacterial community of lambs[J]. BMC Microbiol, 2021, 21(1):250.
doi: 10.1186/s12866-021-02311-1 URL |
[58] |
Jian LY, Xue Y, Gao YF, et al. Vitamin E can ameliorate oxidative damage of ovine hepatocytes in vitro by regulating genes expression associated with apoptosis and pyroptosis, but not ferroptosis[J]. Molecules, 2021, 26(15):4520.
doi: 10.3390/molecules26154520 URL |
[1] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[2] | 刘娜, 焦京琳, 饶正华. 短链脂肪酸在动物样本中的检测方法研究进展[J]. 生物技术通报, 2022, 38(8): 84-91. |
[3] | 王璐, 刘理想, 孙大明, 刘军花. 丁酸调控幼龄反刍动物瘤胃上皮发育研究进展[J]. 生物技术通报, 2020, 36(2): 49-57. |
[4] | 刘宇, 丁倩雯, 冉超, 杨雅麟, 王安然, 张洪玲, 张进雄, 李解, Rolf Erik Olsen, Einar Ringø, 张震, 周志刚. 鱼虾肠道菌群代谢产物短链脂肪酸研究进展[J]. 生物技术通报, 2020, 36(2): 58-64. |
[5] | 林淼, 王阔鹏, 陈映良, 孙文婧, 封丽梅, 胡梓轩. 乙醇对瘤胃液接种稻秸的体外发酵产物及细菌群落结构的影响[J]. 生物技术通报, 2020, 36(2): 91-99. |
[6] | 刘淑君, 陈苗, 王凤忠, 包郁明, 辛凤姣, 温博婷. 谷氨酸(钠)对人体肠道菌群影响的体外发酵研究[J]. 生物技术通报, 2020, 36(12): 104-112. |
[7] | 李梦颖, 周华, 丁玉春, 刘作华, 孙静, 李周权. 肠道微生物对仔猪胆汁酸谱及胆汁酸代谢的影响[J]. 生物技术通报, 2020, 36(10): 49-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||