[1] |
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(44):15718-15723.
doi: 10.1073/pnas.0407076101
URL
pmid: 15505215
|
[2] |
Moos WH, Faller DV, Harpp DN, et al. Microbiota and neurological disorders:A gut feeling[J]. BioResearch Open Access, 2016,5(1):137-145.
doi: 10.1089/biores.2016.0010
URL
pmid: 27274912
|
[3] |
田祖宏, 聂勇战. 肠道微生物与脑-肠轴交互作用的研究进展[J]. 传染病信息, 2016,29(5):302-307.
|
|
Tian ZH, Nie YZ. Research progress of the interaction between gut microbes and brain gut axis[J]. Infectious Disease Information, 2016,29(5):302-307.
|
[4] |
Ueno H. Enzymatic and structural aspects on glutamate decarboxylase[J]. Journal of Molecular Catalysis B-enzymatic, 2000,10(1):67-79.
|
[5] |
Hyland NP, Cryan JF. A gut feeling about GABA:focus on GABAB receptors[J]. Frontiers in Pharmacology, 2010,1(124). DOI: 10.3389/fphar.2010.00124.
|
[6] |
Juliopieper M, Oconnor RM, Dinan TG, et al. Regulation of the brain-gut axis by group III metabotropic glutamate receptors.[J]. European Journal of Pharmacology, 2013,698(1):19-30.
|
[7] |
况野, 王蓉, 李旋, 等. 谷氨酸脱羧酶研究进展[J]. 生命的化学, 2014,34(1):86-92.
|
|
Kuang Y, Wang R, Li X, et al. Research progress of glutamic acid decarboxylase[J]. Chemistry of Life, 2014,34(1):86-92.
|
[8] |
Barrett E, Ross RP, Otoole PW, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. Journal of Applied Microbiology, 2012,113(2):411-417.
URL
pmid: 22612585
|
[9] |
黄博, 胡佳宇, 吴苗苗, 等. 猪胃肠道谷氨酸代谢及其对机体健康的影响[J]. 动物营养学报, 2015,27(11):3326-3331.
|
|
Huang B, Hu JY, Wu MM, et al. Metabolism of glutamic acid in gastrointestinal tract and its effects on health of pigs[J]. Chinese Journal of Animal Nutrition, 2015,27(11):3326-3331.
|
[10] |
Janeczko MJ, Stoll B, Chang X, et al. Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs[J]. Journal of Nutrition, 2007,137(11):2384-2390.
|
[11] |
Liu RX, Hong JQ, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nature Medicine, 2017,23(7):859-868.
URL
pmid: 28628112
|
[12] |
Schwab C, Ruscheweyh H, Bunesova V, et al. Trophic interactions of infant Bifidobacteria and Eubacterium hallii during L-Fucose and fucosyllactose degradation[J]. Frontiers in Microbiology, 2017,8(95). DOI: 10.3389/fmicb.2017.00095.
|
[13] |
许建军. 比色法快速测定乳酸菌谷氨酸脱羧酶活力及其应用[J]. 微生物学通报, 2004,31(2):66-71.
|
|
Xu JJ. Rapid determination of glutamate decarboxylase activity from lactic acid bacteria by spectrometric method and it’s applications[J]. Microbiology China, 2004,31(2):66-71.
|
[14] |
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014,505(7484):559-563.
doi: 10.1038/nature12820
URL
pmid: 24336217
|
[15] |
Rowland I, Gibson GR, Heinken AK, et al. Gut microbiota functions:metabolism of nutrients and other food components[J]. European Journal of Nutrition, 2018,57(1):1-24.
URL
pmid: 28393285
|
[16] |
Bai Y, Zhao JB, Tao SY, et al. Effect of dietary fiber fermentation on short chain fatty acid production and microbial composition in vitro[J]. Journal of the Science and Agriculture, 2020,100(11):4282-4291.
|
[17] |
刘松珍, 张雁, 张名位, 等. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学, 2013,11(1):105-109.
|
|
Liu SZ, Zhang Y, Zhang MW, et al. Research progress on producing mechanism and physiological functions of intestinal short chain fatty acids[J]. Guangdong Agricultural Sciences, 2013,11(1):105-109.
|
[18] |
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012,489(7415):242-249.
doi: 10.1038/nature11552
URL
pmid: 22972297
|
[19] |
Sarasa SB, Mahendran R, Muthusamy G, et al. A brief review on the non-protein amino acid, gamma-amino butyric acid(GABA):its production and role in microbes.[J]. Current Microbiology, 2020,77(4):534-544.
doi: 10.1007/s00284-019-01839-w
URL
pmid: 31844936
|
[20] |
Wang MM, Wichienchot S, He XW, et al. In vitro colonic fermentation of dietary fibers:Fermentation rate, short-chain fatty acid production and changes in microbiota[J]. Trends in Food Science & Technology, 2019,88(1). DOI: 10.1016/j.tifs.2019.03005.
|
[21] |
Sasaki D, Sasaki K, Ikuta N, et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure[J]. Scientific Reports, 2018,8(1):435-443.
doi: 10.1038/s41598-017-18877-8
URL
pmid: 29323180
|
[22] |
林淼, 王阔鹏, 陈映良, 等. 乙醇对瘤胃液接种稻秸的体外发酵产物及细菌群落结构的影响[J]. 生物技术通报, 2020,36(2):91-99.
|
|
Lin M, Wang KP, Chen YL, et al. Effects of ethanol on metabolites and bacterial community of rice straw cocultured with rumen fluid in vitro[J]. Biotechnology Bulletin, 2020,36(2):91-99.
|
[23] |
Turroni F, Milani C, Duranti S, et al. Glycan utilization and cross-feeding activities by Bifidobacteria[J]. Trends in Microbiology, 2017,26(4):339-350.
URL
pmid: 29089173
|
[24] |
Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota[J]. Nature Microbiology, 2019,4(3):396-403.
doi: 10.1038/s41564-018-0307-3
URL
pmid: 30531975
|
[25] |
Anand S, Kaur H, Mande SS, et al. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens[J]. Frontiers in Microbiology, 2016,7(1945). DOI: 10.3389/fmicb.2016.01945.
|
[26] |
Liu H, Wang J, He T, et al. Butyrate:A double-edged sword for health?[J]. Advances in Nutrition, 2018,9(1):21-29.
doi: 10.1093/advances/nmx009
URL
pmid: 29438462
|