生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 119-127.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184
收稿日期:
2021-09-14
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
周琳,女,硕士,助理研究员,研究方向:微藻生物技术;E-mail: 基金资助:
ZHOU Lin1,2(), LIANG Xuan-ming1, ZHAO Lei1,2()
Received:
2021-09-14
Published:
2022-07-26
Online:
2022-08-09
摘要:
类胡萝卜素是广泛存在于高等植物、微生物和藻类中的一大类天然色素物质的总称,是重要的天然食用色素群之一。细胞工厂被广泛用于各种化学品、食品和药品等的生产,是绿色生物制造的中心环节。利用细胞工厂合成来源稀缺、获取难度大的高附加值天然类胡萝卜素,具有经济可行和环境友好等优势。类胡萝卜素在抗氧化、视力保护和抗癌等方面具有非常重要的作用。本文对生物合成类胡萝卜素细胞工厂构建过程中的类胡萝卜素基本合成路径解析、底盘细胞的选择和改造、途径的模块组装与适配及合成生物学策略等展开详细介绍。同时,对未来类胡萝卜素生物合成所面临的机遇和挑战进行了展望。
周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127.
ZHOU Lin, LIANG Xuan-ming, ZHAO Lei. Biosynthesis of Natural Carotenoids:Progress and Perspective[J]. Biotechnology Bulletin, 2022, 38(7): 119-127.
类胡萝卜素 Carotenoids | 生物学功能 Biological function |
---|---|
虾青素 Astaxanthin | 抗氧化、抗炎、抗癌、预防心血管疾病 |
β-胡萝卜素 β-carotene | 抗氧化、预防夜盲症、抗肝硬化 |
叶黄素 Lutein | 预防白内障和老年性黄斑变性、抗氧化、抗肿瘤 |
番茄红素 Lycopene | 抗癌、预防心血管疾病、防辐射、抗氧化 |
表1 主要类胡萝卜素的生物学功能
Table 1 Biological functions of main carotenoids
类胡萝卜素 Carotenoids | 生物学功能 Biological function |
---|---|
虾青素 Astaxanthin | 抗氧化、抗炎、抗癌、预防心血管疾病 |
β-胡萝卜素 β-carotene | 抗氧化、预防夜盲症、抗肝硬化 |
叶黄素 Lutein | 预防白内障和老年性黄斑变性、抗氧化、抗肿瘤 |
番茄红素 Lycopene | 抗癌、预防心血管疾病、防辐射、抗氧化 |
图2 类胡萝卜素合成途径 MVA:mevalonic acid,甲羟戊酸途径;MEP:methyl erythritol phosphate,甲基赤藓糖醇途径;CrtB:phytoene synthase,八氢番茄红素合成酶;CrtI:phytoene desaturase,八氢番茄红素脱氢酶;CrtY:lycopene-β-cyclase,番茄红素β-环化酶;CrtE:GGPP synthetase,GGPP 合成酶;CrtZ:β-carotene 3-hydroxylase,β-胡萝卜素3-羟化酶;CrtW:β-carotene ketosylase,β-胡萝卜素酮化酶;ZEP:zeathanxin epoxidase,玉米黄质环氧化酶;VDE:violaxanthin deepoxidase,堇菜黄质脱环氧化酶;LUT1:carotenoid ε-hydroxylase,类胡萝卜素ε-羟化酶
Fig. 2 Carotenoid synthesis pathway
名称 Name | 编号 No. | 简写 Abbreviation | 编码基因 Encoding gene |
---|---|---|---|
八氢番茄红素合成酶 Phytoene synthase | 2.5.1.32 | PSY | AtPSY |
八氢番茄红素脱氢酶 Phytoene desaturase | 1.3.5.5 | PDS | AtPDS3 |
ξ-胡萝卜素脱氢酶 ζ-carotene desaturase | 1.3.5.6 | ZDS | AtZDS |
番茄红素ε-环化酶 Lycopene ε-cyclase | 5.5.1.18 | ε-LCY(LCYe) | AtLUT2 |
番茄红素β-环化酶 Lycopene-β-cyclase | 5.5.1.19 | β-LCY(LCYb) | AtLYC |
类胡萝卜素ε-羟化酶 Carotenoid ε-hydroxylase | 1.14.14.158 | LUT1 | AtLUT1 |
β-胡萝卜素3-羟化酶 β-carotene 3-hydroxylase | 1.14.15.24 | CrtZ | Atβ-OHASE_1 Atβ-OHASE_2 |
β-环羟化酶 β-cyclohydroxylase | 1.14 | LUT5 | AtCYP97A3 |
玉米黄素环氧化酶 Zeathanxin epoxidase | 1.14.15.21 | ZEP | AtABA1 |
堇菜黄质脱环氧化酶 Violaxanthin deepoxidase | 1.23.5.1 | VDE | NPQ1 |
表2 参与类胡萝卜素生物合成的酶及编码基因
Table 2 Enzymes and encoding genes involved in caroten-oid biosynthesis
名称 Name | 编号 No. | 简写 Abbreviation | 编码基因 Encoding gene |
---|---|---|---|
八氢番茄红素合成酶 Phytoene synthase | 2.5.1.32 | PSY | AtPSY |
八氢番茄红素脱氢酶 Phytoene desaturase | 1.3.5.5 | PDS | AtPDS3 |
ξ-胡萝卜素脱氢酶 ζ-carotene desaturase | 1.3.5.6 | ZDS | AtZDS |
番茄红素ε-环化酶 Lycopene ε-cyclase | 5.5.1.18 | ε-LCY(LCYe) | AtLUT2 |
番茄红素β-环化酶 Lycopene-β-cyclase | 5.5.1.19 | β-LCY(LCYb) | AtLYC |
类胡萝卜素ε-羟化酶 Carotenoid ε-hydroxylase | 1.14.14.158 | LUT1 | AtLUT1 |
β-胡萝卜素3-羟化酶 β-carotene 3-hydroxylase | 1.14.15.24 | CrtZ | Atβ-OHASE_1 Atβ-OHASE_2 |
β-环羟化酶 β-cyclohydroxylase | 1.14 | LUT5 | AtCYP97A3 |
玉米黄素环氧化酶 Zeathanxin epoxidase | 1.14.15.21 | ZEP | AtABA1 |
堇菜黄质脱环氧化酶 Violaxanthin deepoxidase | 1.23.5.1 | VDE | NPQ1 |
底盘细胞Chassis cells | 类胡萝卜素Carotenoid | 工程手段 Engineering measures |
---|---|---|
大肠杆菌 E. coli | 番茄红素Lycopene | 过表达戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD 和转醛酶B TalB |
β-胡萝卜素β-carotene | 对合成路径模块进行工程化改造;过表达α-酮戊二酸脱氢酶SucAB 和琥珀酸脱氢酶SdhABCD;过表达转醛酶TalB,增强磷酸戊糖途径 | |
玉米黄质Zeaxanthin | 应用可调控基因间序列平衡异MVA 路径蛋白表达;使用IPP/FPP 响应启动子动态调控异源MVA 路径基因,减少有毒中间代谢物积累 | |
虾青素Astaxanthin | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化;OmpF 和TrxA 标签分别与截短蛋白N 端或C 端融合,实现CrtW 的稳定表达和质膜定位 | |
酿酒酵母 S. cerevisiae | 番茄红素Lycopene | CrtB 序列的筛选;CrtYB 与CrtE 的定向进化;调节Crt 编码基因拷贝数;构建非营养缺陷二倍体细胞 |
β-胡萝卜β-carotene | 以GAL 系统和HXT1 启动子时序调控胡萝卜素和竞争性鲨烯的合成 | |
虾青素Astaxanthin | CrtZ 和CrtW 协同定向进化;温敏调控系统控制关键基因表达 | |
耶氏解脂酵母 Y. lipolytica | 番茄红素Lycopene | 引入异戊烯醇同化路径增强前体IPP/DMAPP 供给;增强脂质积累;增加IDI 拷贝 |
β-胡萝卜β-carotene | 选择高度积累脂质的底盘;路径基因启动子的组合适配;发酵条件优化 | |
虾青素Astaxanthin | 下调鲨烯合酶的表达;同时表达不同来源的CrtE;筛选CrtZ/CrtW 来源,调节表达量 |
表3 合成类胡萝卜素细胞工厂的构建示例
Table 3 Construction examples of a synthetic carotenoid cell factory
底盘细胞Chassis cells | 类胡萝卜素Carotenoid | 工程手段 Engineering measures |
---|---|---|
大肠杆菌 E. coli | 番茄红素Lycopene | 过表达戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD 和转醛酶B TalB |
β-胡萝卜素β-carotene | 对合成路径模块进行工程化改造;过表达α-酮戊二酸脱氢酶SucAB 和琥珀酸脱氢酶SdhABCD;过表达转醛酶TalB,增强磷酸戊糖途径 | |
玉米黄质Zeaxanthin | 应用可调控基因间序列平衡异MVA 路径蛋白表达;使用IPP/FPP 响应启动子动态调控异源MVA 路径基因,减少有毒中间代谢物积累 | |
虾青素Astaxanthin | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化;OmpF 和TrxA 标签分别与截短蛋白N 端或C 端融合,实现CrtW 的稳定表达和质膜定位 | |
酿酒酵母 S. cerevisiae | 番茄红素Lycopene | CrtB 序列的筛选;CrtYB 与CrtE 的定向进化;调节Crt 编码基因拷贝数;构建非营养缺陷二倍体细胞 |
β-胡萝卜β-carotene | 以GAL 系统和HXT1 启动子时序调控胡萝卜素和竞争性鲨烯的合成 | |
虾青素Astaxanthin | CrtZ 和CrtW 协同定向进化;温敏调控系统控制关键基因表达 | |
耶氏解脂酵母 Y. lipolytica | 番茄红素Lycopene | 引入异戊烯醇同化路径增强前体IPP/DMAPP 供给;增强脂质积累;增加IDI 拷贝 |
β-胡萝卜β-carotene | 选择高度积累脂质的底盘;路径基因启动子的组合适配;发酵条件优化 | |
虾青素Astaxanthin | 下调鲨烯合酶的表达;同时表达不同来源的CrtE;筛选CrtZ/CrtW 来源,调节表达量 |
[1] |
Borowitzka MA. High-value products from microalgae—their development and commercialisation[J]. J Appl Phycol, 2013, 25(3):743-756.
doi: 10.1007/s10811-013-9983-9 URL |
[2] |
Han SI, Chang SH, Lee C, et al. Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris[J]. Bioresour Technol, 2020, 314:123725.
doi: 10.1016/j.biortech.2020.123725 URL |
[3] |
Ma T, Shi B, Ye Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metab Eng, 2019, 52:134-142.
doi: 10.1016/j.ymben.2018.11.009 URL |
[4] |
López J, Cataldo VF, Peña M, et al. Build your bioprocess on a solid strain—β-carotene production in recombinant Saccharomyces cerevisiae[J]. Front Bioeng Biotechnol, 2019, 7:171.
doi: 10.3389/fbioe.2019.00171 URL |
[5] |
Sasso S, Pohnert G, Lohr M, et al. Microalgae in the postgenomic era:a blooming reservoir for new natural products[J]. FEMS Microbiol Rev, 2012, 36(4):761-785.
doi: 10.1111/j.1574-6976.2011.00304.x URL |
[6] |
Ahrazem O, Gómez-Gómez L, Rodrigo M, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms:features and functions[J]. Int J Mol Sci, 2016, 17(11):1781.
doi: 10.3390/ijms17111781 URL |
[7] |
Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids[J]. Prog Lipid Res, 2004, 43(3):228-265.
pmid: 15003396 |
[8] |
Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health[J]. Arch Biochem Biophys, 2018, 652:18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291 |
[9] |
Pulz O, Gross W. Valuable products from biotechnology of microalgae[J]. Appl Microbiol Biotechnol, 2004, 65(6):635-648.
doi: 10.1007/s00253-004-1647-x URL |
[10] |
Flachowsky G, Aulrich K, Böhme H, et al. Studies on feeds from genetically modified plants(GMP)-Contributions to nutritional and safety assessment[J]. Animal Feed Sci Technol, 2007, 133(1/2):2-30.
doi: 10.1016/j.anifeedsci.2006.08.002 URL |
[11] |
Katsuda T, Lababpour A, Shimahara K, et al. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs[J]. Enzyme Microb Technol, 2004, 35(1):81-86.
doi: 10.1016/j.enzmictec.2004.03.016 URL |
[12] | 张磊. β-胡萝卜素高产菌三孢布拉霉的选育及发酵工艺研究[D]. 武汉: 华中科技大学, 2017. |
Zhang L. Breeding of high-yielding β-carotene strain Blakeslea trispora and optimization of its fementation technique[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
[13] |
Mata-Gómez LC, Montañez JC, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeasts:an overview[J]. Microb Cell Fact, 2014, 13:12.
doi: 10.1186/1475-2859-13-12 pmid: 24443802 |
[14] | Lado J, Zacarías L, Rodrigo MJ. Regulation of carotenoid biosynthesis during fruit development[J]. Subcell Biochem, 2016, 79:161-198. |
[15] |
Mitri K, Shegokar R, Gohla S, et al. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery[J]. Int J Pharm, 2011, 420(1):141-146.
doi: 10.1016/j.ijpharm.2011.08.026 URL |
[16] | Gong M. Investigation of lutein production and recovery from Chlorella vulgaris using phototrophic cultivation[D]. London: The University of Western Ontario, 2017. |
[17] | Vasudeva V, Tenkanidiyoor YS, Peter AJ, et al. Radioprotective efficacy of lutein in ameliorating electron beam radiation-induced oxidative injury in Swiss albino mice[J]. Iran J Med Sci, 2018, 43(1):41-51. |
[18] | 张涛, 邓思, 陈艳红, 等. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9):8-15. |
Zhang T, Deng S, Chen YH, et al. Antioxidant activity and synergistic effect of astaxanthin and β-carotene[J]. Food Ferment Ind, 2021, 47(9):8-15. | |
[19] | 任丹丹, 张海丽, 王惜童, 等. 叶黄素与玉米黄质协同抗氧化活性的研究[J]. 食品工业科技, 2017, 38(17):296-299, 304. |
Ren DD, Zhang HL, Wang XT, et al. Study on the synergistic antioxidant activity of lutein and Zeaxanthin[J]. Sci Technol Food Ind, 2017, 38(17):296-299, 304. | |
[20] |
Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E. Biotechnological production of lutein and its applications[J]. Appl Microbiol Biotechnol, 2010, 86(1):27-40.
doi: 10.1007/s00253-009-2420-y pmid: 20091305 |
[21] |
Ozawa Y, Sasaki M, Takahashi N, et al. Neuroprotective effects of lutein in the Retina[J]. Curr Pharm Des, 2012, 18(1):51-56.
doi: 10.2174/138161212798919101 URL |
[22] |
Hwang JS, Han SG, Lee CH, et al. Lutein suppresses hyperglycemia-induced premature senescence of retinal pigment epithelial cells by upregulating SIRT1[J]. J Food Biochem, 2018, 42(3):e12495. DOI: 10.1111/jfbc.12495.
doi: 10.1111/jfbc.12495 |
[23] |
Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries[J]. Mar Drugs, 2018, 16(1):26.
doi: 10.3390/md16010026 URL |
[24] |
Kim KN, Heo SJ, Yoon WJ, et al. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264. 7 macrophages[J]. Eur J Pharmacol, 2010, 649(1/2/3):369-375.
doi: 10.1016/j.ejphar.2010.09.032 URL |
[25] |
Kotake-Nara E, Terasaki M, Nagao A. Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells[J]. Biosci Biotechnol Biochem, 2005, 69(1):224-227.
doi: 10.1271/bbb.69.224 URL |
[26] |
Satomi Y. Antitumor and cancer-preventative function of fucoxanthin:a marine carotenoid[J]. Anticancer Res, 2017, 37(4):1557-1562.
doi: 10.21873/anticanres.11484 URL |
[27] |
Gong M, Bassi A. Carotenoids from microalgae:a review of recent developments[J]. Biotechnol Adv, 2016, 34(8):1396-1412.
doi: 10.1016/j.biotechadv.2016.10.005 URL |
[28] | Britton G, Liaaen-Jensen S, Pfander H. Carotenoids[M]. Basel: Birkhäuser Basel, 2004. |
[29] | 王春菲, 贾倩云, 贾真真, 等. 番茄红素ε-环化酶调节烟草抗旱性的研究[J]. 河南大学学报:自然科学版, 2019, 49(4):444-449. |
Wang CF, Jia QY, Jia ZZ, et al. The study of lycopene ε-cyclase in drought adaption in tobacco[J]. J Henan Univ:Nat Sci, 2019, 49(4):444-449. | |
[30] |
Jing YW, Guo F, Zhang SJ, et al. Recent advances on biological synthesis of lycopene by using industrial yeast[J]. Ind Eng Chem Res, 2021, 60(9):3485-3494.
doi: 10.1021/acs.iecr.0c05228 URL |
[31] |
Perozeni F, Cazzaniga S, Baier T, et al. Turning a green alga red:engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii[J]. bioRxiv, 2019. DOI: 10.1101/535989.
doi: 10.1101/535989 |
[32] | Porter J W, Lincoln RE. Lycopersicon selections containing a high content of carotenes and colorless polyenes;the mechanism of carotene biosynthesis[J]. Arch Biochem. 1950, 27(2):390-403. |
[33] |
Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, et al. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis[J]. BMC Genomics, 2015, 16:877.
doi: 10.1186/s12864-015-2065-4 pmid: 26511010 |
[34] | Paniagua-Michel J, Olmos-Soto J, Ruiz MA. Pathways of carotenoid biosynthesis in bacteria and microalgae[M]// Barredo JL. Microbial Carotenoids from Bacteria and Microalgae. New York: Humana Press, 2012, 1-12. |
[35] |
You MK, Lee YJ, Kim JK, et al. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds[J]. BMC Plant Biol, 2020, 20(1):167.
doi: 10.1186/s12870-020-02357-9 pmid: 32293285 |
[36] |
Shewmaker CK, Sheehy JA, Daley M, et al. Seed-specific overexpression of phytoene synthase:increase in carotenoids and other metabolic effects[J]. Plant J, 1999, 20(4):401-412.
doi: 10.1046/j.1365-313x.1999.00611.x URL |
[37] | 宋小艳. 马铃薯β-胡萝卜素合成基因StLCYb的克隆与功能分析[D]. 南京: 南京农业大学, 2015. |
Song XY. Cloning and functional analysis of β-carotene synthesis genes stlcyb in potato[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[38] | 王玉萍, 刘庆昌, 翟红. 植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J]. 分子植物育种, 2006, 4(1):103-110. |
Wang YP, Liu QC, Zhai H. Expression and regulation of genes related to plant carotenoid biosynthesis and their application in plant gene engineering[J]. Mol Plant Breed, 2006, 4(1):103-110. | |
[39] |
Gao HJ, Xu J, Liu X, et al. Light effect on carotenoids production and expression of carotenogenesis genes in Citrus callus of four genotypes[J]. Acta Physiol Plant, 2011, 33(6):2485-2492.
doi: 10.1007/s11738-011-0793-x URL |
[40] |
Qin G, Gu H, Ma L, et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Res, 2007, 17(5):471-482.
doi: 10.1038/cr.2007.40 URL |
[41] |
García-Plazaola JI, Matsubara S, Osmond CB. The lutein epoxide cycle in higher plants:its relationships to other xanthophyll cycles and possible functions[J]. Funct Plant Biol, 2007, 34(9):759-773.
doi: 10.1071/FP07095 pmid: 32689404 |
[42] | Yoshida R, Yoshimura T, Hemmi H. Reconstruction of the “archaeal” mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells[J]. Appl Environ Microbiol, 2020, 86(6):e02889-19. |
[43] | 王颖, 曲俊泽, 梁楠, 等. 合成类胡萝卜素细胞工厂的快速构建和定向进化[J]. 化工进展, 2021, 40(3):1187-1201. |
Wang Y, Qu JZ, Liang N, et al. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis[J]. Chem Ind Eng Prog, 2021, 40(3):1187-1201. | |
[44] |
Goto S, Kogure K, Abe K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin[J]. Biochim Biophys Acta, 2001, 1512(2):251-258.
pmid: 11406102 |
[45] |
Verwaal R, Jiang Y, Wang J, et al. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response[J]. Yeast, 2010, 27(12):983-998.
doi: 10.1002/yea.1807 URL |
[46] |
Zhou PP, Xie WP, Yao Z, et al. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnol Bioeng, 2018, 115(5):1321-1330.
doi: 10.1002/bit.26544 URL |
[47] |
Wu T, Ye L, Zhao D, et al. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories[J]. 3 Biotech, 2018, 8(6):269.
doi: 10.1007/s13205-018-1298-8 URL |
[48] | Chen Y, Wang Y, Liu M, et al. Primary and secondary metabolic effects of a key gene deletion(Δ YPL062W)in metabolically engineered terpenoid-producing Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2019, 85(7):e01990-18. |
[49] | 杨永富, 耿碧男, 宋皓月, 等. 合成生物学时代基于非模式细菌的工业底盘细胞研究现状与展望[J]. 生物工程学报, 2021, 37(3):874-910. |
Yang YF, Geng BN, Song HY, et al. Progress and perspective on development of non-model industrial bacteria as chassis cells for biochemical production in the synthetic biology era[J]. Chin J Biotechnol, 2021, 37(3):874-910. | |
[50] | 郑阳霞, 杨婉身, 季静, 等. 类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展[J]. 细胞生物学杂志, 2006, 28(3):442-446. |
Zheng YX, Yang WS, Ji J, et al. Progress in gene cloning and genetic manipulation of carotenoid biosynthesis[J]. Chin J Cell Biol, 2006, 28(3):442-446. | |
[51] |
Zhu QL, Zeng DC, Yu SZ, et al. From golden rice to aSTARice:bioengineering astaxanthin biosynthesis in rice endosperm[J]. Mol Plant, 2018, 11(12):1440-1448.
doi: 10.1016/j.molp.2018.09.007 URL |
[52] |
Couso I, Cordero BF, et al. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the Zeaxanthin epoxidase gene isolated and characterized from Chlorellazofingiensis[J]. Mar Drugs, 2012, 10(9):1955-1976.
doi: 10.3390/md10091955 URL |
[53] | 武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5):703-711. |
Wu T, Zhang Z, Bi CH. Improving β-carotene production in Escherichia coli by modularized regulation of the membrane synthetic pathway and morphology engineering[J]. Chin J Biotechnol, 2018, 34(5):703-711. | |
[54] |
Liang N, Chen C, Wang Y, et al. Exploring catalysis specificity of phytoene dehydrogenase CrtI in carotenoid synthesis[J]. ACS Synth Biol, 2020, 9(7):1753-1762.
doi: 10.1021/acssynbio.0c00128 pmid: 32579850 |
[55] |
Lu Q, Bu YF, Liu JZ. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid[J]. Mar Drugs, 2017, 15(10):296.
doi: 10.3390/md15100296 URL |
[56] |
Henke N, Heider S, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum[J]. Mar Drugs, 2016, 14(7):124.
doi: 10.3390/md14070124 URL |
[57] |
Zhao J, Li QY, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metab Eng, 2013, 17:42-50.
doi: 10.1016/j.ymben.2013.02.002 URL |
[58] |
Coussement P, Bauwens D, et al. Direct combinatorial pathway optimization[J]. ACS Synth Biol, 2017, 6(2):224-232.
doi: 10.1021/acssynbio.6b00122 pmid: 27672702 |
[59] |
Morrone D, Lowry L, et al. Increasing diterpene yield with a modular metabolic engineering system in E. coli:comparison of MEV and MEP isoprenoid precursor pathway engineering[J]. Appl Microbiol Biotechnol, 2010, 85(6):1893-1906.
doi: 10.1007/s00253-009-2219-x pmid: 19777230 |
[1] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[2] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[3] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[4] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[5] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[6] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[7] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[8] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[9] | 郭晓真, 张学福. 植物合成生物学领域发展态势的文献计量分析[J]. 生物技术通报, 2022, 38(2): 289-296. |
[10] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[11] | 孔谦, 黄文洁, 吴绍文, 李坤, 张名位, 晏石娟. 一种同时测定十种类胡萝卜素的液相色谱方法的建立[J]. 生物技术通报, 2022, 38(11): 80-89. |
[12] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[13] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[14] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[15] | 常瀚文, 郑鑫铃, 骆健美, 王敏, 申雁冰. 抗逆元件及其在高效微生物细胞工厂构建中的应用进展[J]. 生物技术通报, 2020, 36(6): 13-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||