[1] Zaheer K, Akhtar MH.Potato production, usage, and nutrition-a review[J]. Critical Reviews in Food Technology, 2016, 56(5):711-721. [2] Scott G, Suarez V.The rise of Asia as the centre of global potato production and some implications for industry[J]. Potato Journal, 2012, 39(1):1-22. [3] Liang S, Mcdonald AG.Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33):8421-8429. [4] 李颖, 李广存, 李灿辉, 等. 二倍体杂种优势马铃薯育种的展望[J]. 中国马铃薯, 2013(2):38-41. [5] Halterman D, Guenthner J, Collinge S, et al.Biotech potatoes in the 21st century:20 years since the first biotech potato[J]. American Journal of Potato Research, 2015, 93(1):1-20. [6] Consortium PGS.Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355):189-195. [7] Ye MW, Peng Z, Tang D, et al.Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nature Plants, 2018, 4(9):651-654. [8] Shalem O, Sanjana NE, Zhang F.High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5):299-311. [9] Sander JD, Joung JK.CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4):347-355. [10] Desjarlais JR, Berg JM.Toward rules relating zinc finger protein sequences and DNA binding site preferences[J]. Proceedings of the National Academy of Sciences, 1992, 89(16):7345-7349. [11] Berg JM, Desjarlais JR.Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(6):2256-2260. [12] Kim YG, Cha J, Chandrasegaran S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences, 1996, 93(3):1156-1160. [13] Smith J, Bibikova M, Whitby FG, et al.Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains[J]. Nucleic Acids Research, 2000, 28(17):3361-3369. [14] Bibikova M, Carroll D, Segal DJ, et al.Stimulation of homologous recombination through targeted cleavage by chimeric nucleases[J]. Molecular & Cellular Biology, 2001, 21(1):289-297. [15] Bibikova M, Golic M, Golic KG, et al.Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3):1169-1175. [16] Lloyd A, Plaisier CL, Carroll D, et al.Targeted mutagenesis using zinc-finger nucleases in arabidopsis[J]. Proceedings of the National Academy of Sciences, 2005, 102(6):2232-2237. [17] Shukla VK, Doyon Y, Miller JC et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245):437-441. [18] Curtin SJ, Zhang F, Sander JD, et al.Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases[J]. Plant Physiology, 2011, 156(2):466-473. [19] Cornu TI, Thibodeau-Beganny S, Guhl E, et al.DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases[J]. Molecular Therapy, 2008, 16(2):352-358. [20] Bogdanove AJ, Schornack S, Lahaye T.TAL effectors:finding plant genes for disease and defense[J]. Current Opinion in Plant Biology, 2010, 13(4):394-401. [21] Boch J, Scholze H, Schornack S, et al.Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2010, 326(5):1509-1512. [22] Moscou MJ, Bogdanove AJ.A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501-1501. [23] Zhang Y, Zhang F, Li X, et al.Transcription activator-like effector nucleases enable efficient plant genome engineering[J]. Plant Physiology, 2013, 161(1):20-27. [24] Haun W, Coffman A, Clasen BM, et al.Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal, 2014, 12(7):934-940. [25] Nicolia A, Proux-wéra E, Åhman I, et al. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts[J]. Journal of Biotechnology, 2015(204):17-24. [26] Butler NM, Baltes NJ, Voytas DF, et al.Geminivirus-mediated genome editing in potato(Solanum tuberosum L.)using sequence-specific nucleases[J]. Frontiers in Plant Science, 2016, 7(1045):1045. [27] Ishino Y, Shinagawa H, Makino K, et al.Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433. [28] Pourcel C, Drevet C.Occurrence, Diversity of CRISPR-Cas systems and genotyping implications[M]// Barrangou R, Van der oost J. CRISPR-Cas Systems. Berlin:Springer-Verlag, 2013:33-59. [29] Bolotin A.Clustered regularly interspaced short palindrome repeats(CRISPRs)have spacers of extrachromosomal origin[J]. Microbiology, 2005, 151(8):2551-2561. [30] Wiedenheft B, Sternberg SH, Doudna JA.RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. [31] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [32] Shan Q, Wang Y, Li J, et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8):686-688. [33] Butler NM, Atkins PA, Voytas DF, et al.Generation and inheritance of targeted mutations in potato(Solanum tuberosum L.)using the CRISPR/Cas system[J]. PLoS One, 2015, 10(12):e0144591. [34] Hiroaki K, Mariko O, Hiromi MA, et al.Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato[J]. Scientific Reports, 2018, 8(1):13753. [35] Nadakuduti SS, Starker CG, Ko DK, et al.Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts[J]. Frontier in Plant Science, 2019, 10:110. [36] Veillet F, Perrot L, Chauvin L, et al.Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor[J]. International Journal of Molecular Sciences, 2019, 20(2):402. [37] Friedman M.Potato glycoalkaloids and metabolites:roles in the plant and in the diet[J]. Journal of Agricultural and Food Chemistry, 2006, 54(23):8655-8681. [38] Jansky SH, Chung YS, Kittipadukal P.M6:a diploid potato inbred line for use in breeding and genetics research[J]. Journal of Plant Registrations, 2014, 8(2):195-199. [39] Sawai S, Ohyama K, Yasumoto S, et al.Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato[J]. The Plant Cell, 2014, 26(9):3763-3774. [40] Nakayasu M, Umemoto N, Ohyama K, et al.A Dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis[J]. Plant Physiology, 2017, 175(1):120-133. [41] Nakayasu M, Akiyama R, Lee HJ, et al.Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene[J]. Plant Physiology and Biochemistry, 2018(131):70-77. [42] Dale MFB, Bradshaw JE.Progress in improving processing attributes in potato[J]. Trends in Plant Science, 2003, 8(7):310-312. [43] Sowokinos JR.Biochemical and molecular control of cold-induced sweetening in potatoes[J]. American Journal of Potato Research, 2001, 78(3):221-236. [44] Matsuuraendo C, Oharatakada A, Chuda Y, et al.Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips[J]. Journal of the Agricultural Chemical Society of Japan, 2006, 70(5):1173-1180. [45] Tareke E, Rydberg P, Karlsson P, et al.Analysis of acrylamide, a carcinogen formed in heated foodstuffs[J]. Journal of Agricultural and Food Chemistry, 2002, 50(17):4998-5006. [46] Bhaskar PB, Wu L, Busse JS, et al.Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato[J]. Plant Physiology, 2010, 154(2):939-948. [47] Clasen BM, Stoddard TJ, Luo S, et al.Improving cold storage and processing traits in potato through targeted gene knockout[J]. Plant Biotechnology Journal, 2016, 14(1):169-176. [48] Ellis RP, Cochrane MP, Dale MFB, et al.Starch production and industrial use[J]. Journal of the Science of Food and Agriculture, 1998, 77(3):289-311. [49] Andersson M, Trifonova A, Andersson AB, et al.A novel selection system for potato transformation using a mutated AHAS gene[J]. Plant Cell Reports, 2003, 22(4):261-267. [50] Andersson M, Turesson H, Nicolia A, et al.Efficient targeted multiallelic mutagenesis in tetraploid potato(Solanum tuberosum)by transient CRISPR-Cas9 expression in protoplasts[J]. Plant Cell Reports, 2017, 36(1):117-128. [51] Mendoza HA, Mihovilovich EJ, Saguma F.Identification of triplex(YYYy)potato virus Y(PVY)immune progenitors derived from Solanum tuberosum ssp. Andigena[J]. American Potato Journal, 1996, 73(1):13-19. [52] Jansky SH, Charkowski AO, Douches DS, et al.Reinventing potato as a diploid inbred line-based crop[J]. Crop Science, 2016, 56(4):1412-1421. [53] Hosaka K, Hanneman RE.Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor(Sli)gene on the potato genome using DNA markers[J]. Euphytica, 103(2):265-271. [54] Leisner CP, Hamilton P, Crisovan E, et al.Genome sequence of M6, a diploid inbred clone of the high glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity[J]. Plant Journal, 2018, 94(3):562-570. [55] Mark T.Routes to genetic gain in potato[J]. Nature Plants, 2018, 4(9):631-632. [56] Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, et al.Overcoming self-incompatibility in diploid potato using CRISPR-Cas9[J]. Frontiers in plant science, 2019, 10:376. [57] Zhao H, Wang X, Jia Y, et al.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1):2039. [58] Yuan H, Yiming G, Yuting L, et al.9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice[J]. Frontiers in Plant Science, 2018, 9:162. [59] Fry W.Phytophthora infestans:The plant(and R gene)destroyer[J]. Molecular Plant Pathology, 2008, 9(3):385-402. [60] Oliva R, Ji C, Atienza-Grande G, et al.Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature biotechnology, 2019, 37(11):1344-1350. [61] He Q, McLellan H, Hughes RK, et al. Phytophthora infestans effector SFI3 targets potato UBK to suppress early immune transcriptional responses[J]. New Phytologist, 2019, 222(1):438-454. [62] Turnbull D, Wang H, Breen S, et al.AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity[J]. Plant Physiology, 2019, 180(1):571-581. [63] Murphy F, He Q, Armstrong M, et al.The potato MAP3K StVIK is required for Phytophthora infestans RXLR Effector Pi17316 to promote disease[J]. Plant Physiology, 2018, 177(1):398-410. [64] 叶明旺, 张春芝, 黄三文. 二倍体栽培马铃薯高效遗传转化体系的建立[J]. 中国农业科学, 2018, 51(17):18-26. [65] Hsu P, Lander E, Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [66] Wang J, Xu ZW, Liu S, et al.Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication[J]. World Journal of Gastroenterology, 2015(32):112-123. [67] Zhang J, Zong W, Hong W, et al.Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum, and engineer the strain for high-level butanol production[J]. Metabolic Engineering, 2018, 47:49-59. [68] Upadhyay SK, Kumar J, Alok A, et al.RNA-guided genome editing for target gene mutations in wheat[J]. G3(Bethesda), 2013, 3(12):2233-2238. [69] Xie KB, Yang YN.RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant, 2013, 6(6):1975-1983. [70] Trevino AE, Zhang F.Genome editing using cas9 nickases[J]. Methods in enzymology, 2014, 546C(546C):161-174. [71] Schiml S, Fauser F, Puchta H.The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in arabidopsis resulting in heritable progeny[J]. Plant Journal, 80(6):1139-1150. [72] Zhou CY, Sun YD, Yan R, et al.Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278. [73] Fu Y, Sander JD, Reyon D, et al.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. [74] Liu H, Ding Y, Zhou Y, et al.CRISPR-P 2. 0:An Improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant, 2017, 10(3):530-532. [75] Xie K, Zhang J, Yang Y.Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-Mediated Genome Editing in Model Plants and Major Crops[J]. Molecular Plant, 2014, 7(5):923-926. [76] Jiang W, Brueggeman AJ, Horken KM et al. Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii[J]. Eukaryotic Cell, 2014, 13(11):1465-1469. [77] Hendel A, Bak RO, Clark JT, et al.Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J]. Nat Biotechnol, 2015, 33(9):985-989. |