生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 44-57.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0065
• 作物品质遗传与改良专题(专题主编: 刘巧泉 教授) • 上一篇 下一篇
收稿日期:
2021-01-16
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
龚明,男,博士,教授,研究方向:植物逆境生物学;E-mail: gongming6307@163.com作者简介:
雷春霞,女,博士研究生,研究方向:生物化学与分子生物学;E-mail: lcxswx@163.com
基金资助:
LEI Chun-xia1(), LI Can-hui2, CHEN Yong-kun1,3, GONG Ming1()
Received:
2021-01-16
Published:
2022-04-26
Online:
2022-05-06
摘要:
马铃薯(Solanum tuberosum L.)块茎诱导和形成是其生长发育和产量决定最重要的事件,涉及多重环境因素与植物激素及信号分子的互作以及这种互作对大量关键基因及多条信号转导与代谢途径的调控。概述了马铃薯块茎形成的生理生化基础,包括块茎形成的过程及影响块茎形成的内源因素和环境条件;讨论了块茎诱导形成过程中信号转导途径及相关基因、蛋白、miRNAs、激素和第二信使分子等对块茎形成的调节;构建了块茎诱导形成过程中可能的分子互作网络;展望了未来研究的方向和可能的突破点,旨在为将来通过精准分子育种手段来培育高产优质的马铃薯品种提供借鉴和新思路。
雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57.
LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization[J]. Biotechnology Bulletin, 2022, 38(4): 44-57.
图1 离体培养条件下马铃薯块茎形成过程图示 A:匍匐茎的形成和伸长;B:顶端弯曲,亚顶端区域膨大;C:块茎生长;D:块茎形成。所用材料为离体培养条件下马铃薯无菌苗,将预培养好的无菌苗材料单节茎段接于培养瓶(1/2 MS+5.5%蔗糖+0.7%的琼脂培养基)中,置于全黑暗(TD)20℃培养箱内进行诱导培养15 d,取长度约1 cm顶端部分拍照,图中包括块茎形成过程的4个典型的形态变化阶段
Fig. 1 Illustration of S. tuberosum tuberization in vitro A:Stolon formation and growth. B:Bending of the stolon apex and swelling of the subapical part. C:The growing tuber. D:Tuberization. Potato aseptic plantlets cultured in vitro were used as experimental material,single stem segments of the pre-cultured aseptic plantlets were put in a culture flask(1/2 MS + 5.5% sucrose + 0.7% agar medium),and cultured in the total darkness(TD)in a plant growth chamber at 20℃ for 15 d. The top part of about 1cm was photographed,which included 4 typical morphological changing stages of tuberization
[1] |
Hannapel DJ, Sharma P, Lin T, et al. The multiple signals that control Tuber formation[J]. Plant Physiol, 2017, 174(2):845-856.
doi: 10.1104/pp.17.00272 pmid: 28520554 |
[2] | 李灿辉, 杨文丽, 王军. 论马铃薯的文化意义和社会影响[J]. 云南师范大学学报:哲学社会科学版, 2002, 34(2):122-128. |
Li CH, Yang WL, Wang J. Talk about the cultural significance and social influence of potato[J]. J Yunnan Norm Univ:Philos Soc Sci Ed, 2002, 34(2):122-128. | |
[3] |
Zaheer K, Akhtar MH. Potato production, usage, and nutrition——A review[J]. Crit Rev Food Sci Nutr, 2016, 56(5):711-721.
doi: 10.1080/10408398.2012.724479 URL |
[4] | 卢肖平. 马铃薯主粮化战略的意义、瓶颈与政策建议[J]. 华中农业大学学报:社会科学版, 2015(3):1-7. |
Lu XP. Strategy of potato as staple food:significance, bottlenecks and policy suggestions[J]. J Huazhong Agric Univ:Soc Sci Ed, 2015(3):1-7. | |
[5] |
Dutt S, Manjul AS, Raigond P, et al. Key players associated with tuberization in potato:potential candidates for genetic engineering[J]. Crit Rev Biotechnol, 2017, 37(7):942-957.
doi: 10.1080/07388551.2016.1274876 pmid: 28095718 |
[6] |
叶明旺, 李灿辉, 龚明. 基因组编辑技术在马铃薯精准分子育种中的应用及研究展望[J]. 生物技术通报, 2020, 36(3):9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1272 |
Ye MW, Li CH, Gong M. Applications and prospect of genome editing techniques in precise potato molecular breeding[J]. Biotechnol Bull, 2020, 36(3):9-17. | |
[7] |
Halterman D, Guenthner J, Collinge S, et al. Biotech potatoes in the 21st century:20 years since the first biotech potato[J]. Am J Potato Res, 2016, 93(1):1-20.
doi: 10.1007/s12230-015-9485-1 URL |
[8] | 苏亚拉其其格, 樊明寿, 贾立国, 等. 氮素形态对马铃薯块茎形成的影响及机理[J]. 土壤通报, 2015, 46(2):509-512. |
Suyala Qi-qige, Fan MS, Fan MS, Jia LG, et al. Influence of nitrogen form on potato tuberization and its possible mechanism[J]. Chin J Soil Sci, 2015, 46(2):509-512. | |
[9] | 苏亚拉其其格, 敖云格日勒, 贾立国, 等. 氮素形态及其浓度供应影响马铃薯块茎形成的生理机制研究[J]. 土壤通报, 2020, 51(6):1430-1436. |
Suyala Qi-qige, Fan MS, Jia LG, et al. Effects of different nitrogen forms and concentrations supply on physiological mechanism of potato tuberization[J]. Chin J Soil Sci, 2020, 51(6):1430-1436. | |
[10] |
Zheng HL, Wang YN, Zhao JY, et al. Tuber formation as influenced by the C:N ratio in potato plants[J]. J Plant Nutr Soil Sci, 2018, 181(5):686-693.
doi: 10.1002/jpln.201700571 URL |
[11] |
Kolomiets MV, Hannapel DJ, Chen H, et al. Lipoxygenase is involved in the control of potato Tuber development[J]. Plant Cell, 2001, 13(3):613-626.
pmid: 11251100 |
[12] | 柳俊, 谢从华. 马铃薯块茎发育机理及其基因表达[J]. 植物学通报, 2001, 18(5):531-539. |
Liu J, Xie CH. The mechanism of potato(Solanum tuberosum L.)Tuber development and related gene expression[J]. Chin Bull Bot, 2001, 18(5):531-539. | |
[13] |
Sarkar D. The signal transduction pathways controlling in planta tuberization in potato:an emerging synjournal[J]. Plant Cell Rep, 2008, 27(1):1-8.
doi: 10.1007/s00299-007-0457-x URL |
[14] | 冷冰, 袁继平, 胡成来, 等. 马铃薯块茎形成的研究进展[J]. 广东农业科学, 2010, 37(6):27-29, 32. |
Leng B, Yuan JP, Hu CL, et al. Research progress on potato tuber formation[J]. Guangdong Agric Sci, 2010, 37(6):27-29, 32. | |
[15] | 李灿辉, 龙维彪. 马铃薯块茎形成机理研究[J]. 中国马铃薯, 1997, 11(3):182-185. |
Li CH, Long WB. Study on the mechanism of potato tuber formation[J]. Chin Potato J, 1997, 11(3):182-185. | |
[16] |
Ševčíková H, Mašková P, Tarkowská D, et al. Carbohydrates and gibberellins relationship in potato tuberization[J]. J Plant Physiol, 2017, 214:53-63.
doi: 10.1016/j.jplph.2017.04.003 URL |
[17] |
何依雪, 刘文, 沈祥陵. GA与B9对马铃薯种薯生长发育的影响[J]. 生物技术通报, 2018, 34(7):66-73.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0023 |
He YX, Liu W, Shen XL. Effects of GA and B9 on the growth and development of potato tubers[J]. Biotechnol Bull, 2018, 34(7):66-73. | |
[18] |
Malkawi A, Jensen BL, Langille AR. Plant hormones isolated from “Katahdin” potato plant tissues and the influence of photoperiod and temperature on their levels in relation to Tuber induction[J]. J Plant Growth Regul, 2007, 26(4):308-317.
doi: 10.1007/s00344-007-9010-y URL |
[19] |
Lomin SN, Myakushina YA, Kolachevskaya OO, et al. Global view on the cytokinin regulatory system in potato[J]. Frontiers in Plant Science, 2020, 11:1-8.
doi: 10.3389/fpls.2020.00001 URL |
[20] |
Romanov GA, Aksenova NP, Konstantinova TN, et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro[J]. Plant Growth Regul, 2000, 32(2/3):245-251.
doi: 10.1023/A:1010771510526 URL |
[21] |
Navarro C, Cruz-Oró E, Prat S. Conserved function of FLOWERING LOCUS T(FT)homologues as signals for storage organ differentiation[J]. Curr Opin Plant Biol, 2015, 23:45-53.
doi: 10.1016/j.pbi.2014.10.008 URL |
[22] |
Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on Tuber initiation and stolon architecture in potato[J]. J Exp Bot, 2012, 63(12):4539-4547.
doi: 10.1093/jxb/ers132 pmid: 22689826 |
[23] |
Marschner H, Sattelmacher B, Bangerth F. Growth rate of potato tubers and endogenous contents of indolylacetic acid and abscisic acid[J]. Physiol Plant, 1984, 60(1):16-20.
doi: 10.1111/j.1399-3054.1984.tb04242.x URL |
[24] |
Macháčková I, Konstantinova TN, Sergeeva LI, et al. Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum[J]. Physiol Plant, 1998, 102(2):272-278.
doi: 10.1034/j.1399-3054.1998.1020215.x URL |
[25] |
Vreugdenhil D, Dijk W. Effects of ethylene on the tuberization of potato(Solanum tuberosum)cuttings[J]. Plant Growth Regul, 1989, 8(1):31-39.
doi: 10.1007/BF00040914 URL |
[26] |
Cenzano A, Vigliocco A, Kraus T, et al. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons[J]. Ann Bot, 2003, 91(7):915-919.
doi: 10.1093/aob/mcg098 URL |
[27] |
Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato(Solanum tuberosum)Tuber formation in vitro[J]. Plant Cell Tissue Organ Cult, 2006, 87(3):285-295.
doi: 10.1007/s11240-006-9166-3 URL |
[28] | Hawker JS, Marschner H, Krauss A. Starch synjournal in developing potato tubers[J]. Physiol Plant, 1979, 46(1):25-30. |
[29] |
Müller-Röber B, Sonnewald U, Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences Tuber formation and expression of Tuber storage protein genes[J]. EMBO J, 1992, 11(4):1229-1238.
pmid: 1373373 |
[30] |
Fu Y, Ballicora MA, Preiss J. Mutagenesis of the glucose-1-phosphate-binding site of potato Tuber ADP-glucose pyrophosphorylase[J]. Plant Physiol, 1998, 117(3):989-996.
pmid: 9662541 |
[31] |
Strunik PC, Vreugdenhil D, Eck HJ, et al. Physiological and genetic control of Tuber formation[J]. Potato Res, 1999, 42(2):313-331.
doi: 10.1007/BF02357860 URL |
[32] |
Andersson M, Turesson H, Arrivault S, et al. Inhibition of plastid PPase and NTT leads to major changes in starch and Tuber formation in potato[J]. J Exp Bot, 2018, 69(8):1913-1924.
doi: 10.1093/jxb/ery051 pmid: 29538769 |
[33] | 李灿辉, 王军, 龙维彪. 马铃薯块茎特异蛋白Patatin研究进展[J]. 中国马铃薯, 1998, 12(3):179-186. |
Li CH, Wang J, Long WB. Domestic and Abroad Research Progress of Potato Tuber-Specific Storage Protein Patatin[J]. Chin Potato, 1998, 12(3):179-186. | |
[34] |
Timlin D, Lutfor Rahman SM, Baker J, et al. Whole plant photosynjournal, development, and carbon partitioning in potato as a function of temperature[J]. Agron J, 2006, 98(5):1195-1203.
doi: 10.2134/agronj2005.0260 URL |
[35] | 连勇, 邹颖, 杨宏福, 等. 马铃薯试管薯发育机理的研究──温度对试管薯形成的影响[J]. 马铃薯杂志, 1996, 10(3):130-132. |
Lian Y, Zou Y, Yang HF, et al. Developmental Mechanism of Potato Microtubers in Vitro in Solanum Tuberosum-Effect of temperature on the formation and growth of microtubers[J]. Chin Potato J, 1996, 10(3):130-132. | |
[36] | Ewing EE, Struik PC. Tuber formation in potato:induction, initiation, and growth[M]//Horticultural Reviews. Oxford, UK:John Wiley & Sons, Inc., 2010: 89-198. |
[37] | Jackson SD. Multiple signaling pathways control Tuber induction in potato[J]. Plant Physiol, 1999, 119(1):1-8. |
[38] |
Abelenda JA, Navarro C, Prat S. Flowering and tuberization:a tale of two nightshades[J]. Trends Plant Sci, 2014, 19(2):115-122.
doi: 10.1016/j.tplants.2013.09.010 pmid: 24139978 |
[39] |
Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, et al. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor[J]. Curr Biol, 2016, 26(7):872-881.
doi: 10.1016/j.cub.2016.01.066 pmid: 26972319 |
[40] | 韦冬萍, 韦剑锋, 吴炫柯, 等. 马铃薯水分需求特性研究进展[J]. 贵州农业科学, 2012, 40(4):66-70. |
Wei DP, Wei JF, Wu XK, et al. Research progress on water requirements of potato[J]. Guizhou Agric Sci, 2012, 40(4):66-70. | |
[41] |
Qiqige S, Jia LG, Qin YL, et al. Effects of different nitrogen forms on potato growth and development[J]. J Plant Nutr, 2017, 40(11):1651-1659.
doi: 10.1080/01904167.2016.1269345 URL |
[42] | 王涛, 何进智, 何文寿, 等. 不同施肥处理对马铃薯产量和营养品质的影响[J]. 西南农业学报, 2016, 29(10):2416-2421. |
Wang T, He JZ, He WS, et al. Effects of different fertilization treatments on yield and nutrientional quality of potato[J]. Southwest China J Agric Sci, 2016, 29(10):2416-2421. | |
[43] | 王小英, 陈占飞, 方玉川, 等. 不同氮磷钾配比对马铃薯农艺性状、产量和品质的影响[J]. 中国农学通报, 2020, 36(4):44-49. |
Wang XY, Chen ZF, Fang YC, et al. Influence of NPK combinations on agronomic characters, yield and nutrition quality of potato[J]. Chin Agric Sci Bull, 2020, 36(4):44-49. | |
[44] |
Ozgen S, Palta JP. Supplemental calcium application influences potato Tuber number and size[J]. HortScience, 2005, 40(1):102-105.
doi: 10.21273/HORTSCI.40.1.102 URL |
[45] | 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展[J]. 中国农业科学, 2013, 46(22):4657-4664. |
Xie TT, Liu J. Molecular mechanism underlying photoperiodic-induced potato Tuber formation[J]. Sci Agric Sin, 2013, 46(22):4657-4664. | |
[46] |
Zhou T, Song B, Liu T, et al. Phytochrome F plays critical roles in potato photoperiodic tuberization[J]. Plant J, 2019, 98(1):42-54.
doi: 10.1111/tpj.14198 URL |
[47] |
Kloosterman B, Abelenda JA, Gomez Mdel M, et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes[J]. Nature, 2013, 495(7440):246-250.
doi: 10.1038/nature11912 URL |
[48] |
Navarro C, Abelenda JA, Cruz-Oró E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T[J]. Nature, 2011, 478(7367):119-122.
doi: 10.1038/nature10431 URL |
[49] |
González-Schain ND, Díaz-Mendoza M, Zurczak M, et al. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner[J]. Plant J, 2012, 70(4):678-690.
doi: 10.1111/j.1365-313X.2012.04909.x URL |
[50] |
Sawa M, Nusinow DA, Kay SA, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science, 2007, 318(5848):261-265.
doi: 10.1126/science.1146994 URL |
[51] |
Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles:phototropin, ZTL/FKF1/LKP2 and aureochrome[J]. Plant Cell Physiol, 2013, 54(1):8-23.
doi: 10.1093/pcp/pcs165 URL |
[52] | 巩慧玲, 孙梦遥, 冯再平, 等. 蔗糖调节马铃薯块茎形成机制的研究进展[J]. 中国蔬菜, 2016(3):13-18. |
Gong HL, Sun MY, Feng ZP, et al. A review of studies on mechanism of regulating potato tuberization by sucrose[J]. China Veg, 2016(3):13-18. | |
[53] | Guo JL, Yu CL, Fan CY, et al. Cloning and characterization of a potato TFL1 gene involved in tuberization regulation[J]. Plant Cell Tissue Organ Cult PCTOC, 2010, 103(1):103-109. |
[54] |
Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1[J]. Plant J, 2004, 38(2):276-284.
pmid: 15078330 |
[55] |
Banerjee AK, Chatterjee M, Yu YY, et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J]. Plant Cell, 2007, 18(12):3443-3457.
doi: 10.1105/tpc.106.042473 URL |
[56] |
Sharma P, Lin T, Hannapel DJ. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A[J]. Plant Physiol, 2016, 170(1):310-324.
doi: 10.1104/pp.15.01314 pmid: 26553650 |
[57] | Hannapel DJ, Banerjee AK. Multiple mobile mRNA signals regulate Tuber development in potato[J]. Plants(Basel), 2017, 6(1):E8. |
[58] |
Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17):2873-2881.
doi: 10.1242/dev.031658 URL |
[59] |
Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. Andigena[J]. Plant Physiol, 2014, 164(2):1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688 |
[60] |
Menzel CM. Tuberization in potato at high temperatures:gibberellin content and transport from buds[J]. Ann Bot, 1983, 52(5):697-702.
doi: 10.1093/oxfordjournals.aob.a086627 URL |
[61] |
Geigenberger P, Geiger M, Stitt M. High-temperature perturbation of starch synjournal is attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers[J]. Plant Physiol, 1998, 117(4):1307-1316.
pmid: 9701586 |
[62] |
Lehretz GG, Sonnewald S, Hornyik C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Curr Biol, 2019, 29(10):1614-1624.e3.
doi: S0960-9822(19)30425-7 pmid: 31056391 |
[63] |
Hancock RD, Morris WL, Ducreux LJ, et al. Physiological, biochemical and molecular responses of the potato(Solanum tuberosum L.)plant to moderately elevated temperature[J]. Plant Cell Environ, 2014, 37(2):439-450.
doi: 10.1111/pce.12168 URL |
[64] |
Rodríguez-Falcón M, Bou J, Prat S. Seasonal control of tuberization in potato:conserved elements with the flowering response[J]. Annu Rev Plant Biol, 2006, 57:151-180.
pmid: 16669759 |
[65] |
Aksenova NP, Konstantinova TN, Golyanovskaya SA, et al. Hormonal regulation of Tuber formation in potato plants[J]. Russ J Plant Physiol, 2012, 59(4):451-466.
doi: 10.1134/S1021443712040024 URL |
[66] |
Carrera E, Bou J, García-Martínez JL, et al. Changes in GA 20-oxidase gene expression strongly affect stem length, Tuber induction and Tuber yield of potato plants[J]. Plant J, 2000, 22(3):247-256.
pmid: 10849342 |
[67] |
Martínez-García JF, García-Martínez JL, Bou J, et al. The interaction of gibberellins and photoperiod in the control of potato tuberization[J]. J Plant Growth Regul, 2001, 20(4):377-386.
doi: 10.1007/s003440010036 URL |
[68] |
Kanno Y, Oikawa T, Chiba Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245.
doi: 10.1038/ncomms13245 pmid: 27782132 |
[69] |
Nam KH, Minami C, Kong FJ, et al. Relation between environmental factors and the LOX activities upon potato Tuber formation and flower-bud formation in morning glory[J]. Plant Growth Regul, 2005, 46(3):253-260.
doi: 10.1007/s10725-005-0056-1 URL |
[70] |
Raíces M, Ulloa RM, MacIntosh GC, et al. StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration[J]. J Exp Bot, 2003, 54(392):2589-2591.
doi: 10.1093/jxb/erg282 URL |
[71] | 房经贵, 朱旭东, 贾海锋, 等. 植物蔗糖合酶生理功能研究进展[J]. 南京农业大学学报, 2017, 40(5):759-768. |
Fang JG, Zhu XD, Jia HF, et al. Research advance on physiological function of plant sucrose synthase[J]. J Nanjing Agric Univ Soc Ed, 2017, 40(5):759-768. | |
[72] |
Xu X, van Lammeren AAM, Vermeer E, et al. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato Tuber formation in vitro[J]. Plant Physiol, 1998, 117(2):575-584.
pmid: 9625710 |
[73] |
Barker L, Kühn C, Weise A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. Plant Cell, 2000, 12(7):1153-1164.
pmid: 10899981 |
[74] |
Chincinska I, Gier K, Krügel U, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Front Plant Sci, 2013, 4:26.
doi: 10.3389/fpls.2013.00026 pmid: 23429841 |
[75] |
Abelenda JA, Bergonzi S, Oortwijn M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato[J]. Curr Biol, 2019, 29(7):1178-1186.e6.
doi: S0960-9822(19)30157-5 pmid: 30905604 |
[76] |
Kolachevskaya OO, Sergeeva LI, Floková K, et al. Auxin synjournal gene tms1 driven by Tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones[J]. Plant Cell Rep, 2017, 36(3):419-435.
doi: 10.1007/s00299-016-2091-y pmid: 27999977 |
[77] | Nookaraju A, Pandey SK, Upadhyaya CP, et al. Role of Ca2+- mediated signaling in potato tuberization:an overview[J]. Bot Stud, 2012, 53(2):177-189. |
[78] |
Wu F, Chi Y, Jiang Z, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796):577-581.
doi: 10.1038/s41586-020-2032-3 URL |
[79] |
Lin T, Sharma P, Gonzalez DH, et al. The impact of the long-distance transport of a BEL1-like messenger RNA on development[J]. Plant Physiol, 2013, 161(2):760-772.
doi: 10.1104/pp.112.209429 URL |
[80] | Teo CJ, Takahashi K, Shimizu K, et al. Potato Tuber induction is regulated by interactions between components of a tuberigen complex[J]. Plant Cell Physiol, 2017, 58(2):365-374. |
[81] |
Potato Genome Sequencing Consortium, Xu X, Pan S, et al. Genome sequence and analysis of the Tuber crop potato[J]. Nature, 2011, 475(7355):189-195.
doi: 10.1038/nature10158 URL |
[82] |
Barrell PJ, Meiyalaghan S, Jacobs JM, et al. Applications of biotechnology and genomics in potato improvement[J]. Plant Biotechnol J, 2013, 11(8):907-920.
doi: 10.1111/pbi.12099 URL |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[4] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[5] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[6] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[7] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[8] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[9] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[10] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[11] | 陶娜, 李茂兴, 郭华春. 发根农杆菌介导的甘薯遗传转化体系优化[J]. 生物技术通报, 2023, 39(10): 175-183. |
[12] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[13] | 陈光, 李佳, 杜瑞英, 王旭. pOsHAK1:OsFLN2提高水稻的糖代谢水平和抗旱性[J]. 生物技术通报, 2022, 38(8): 92-100. |
[14] | 刘自然, 甄珍, 陈强, 李玥莹, 王泽, 逄洪波. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26. |
[15] | 于国红, 刘朋程, 李磊, 李明哲, 崔海英, 郝洪波, 郭安强. 不同基因型马铃薯对干旱胁迫的生理响应[J]. 生物技术通报, 2022, 38(5): 56-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||