生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 40-47.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1227
李鹏程(), 张明俊, 王银晓, 李香银, 李圣彦(), 郎志宏()
收稿日期:
2022-10-08
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
李鹏程,男,博士研究生,研究方向:玉米分子生物学; E-mail: 基金资助:
LI Peng-cheng(), ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan(), LANG Zhi-hong()
Received:
2022-10-08
Published:
2023-01-26
Online:
2023-02-02
摘要:
为研究转基因玉米HGK60在不同遗传背景下遗传稳定性和抗虫效果,利用转Bt cry1Ah基因的转基因玉米HGK60为供体,通过回交转育的方式将cry1Ah基因分别导入玉米自交系郑58、昌7-2、lx05-4、lx03-2,获得转基因玉米自交系HGK60-郑58、HGK60-昌7-2、HGK60-lx03-2、HGK60-lx05-4,并杂交获得HGK60-郑单958(HGK60-郑58 × HGK60-昌7-2)和HGK60-鲁单9066(HGK60-lx05-4 × HGK60-lx03-2),转化体特异性PCR证明cry1Ah基因已转入不同遗传背景玉米中,ELISA检测不同遗传背景转基因玉米叶片中Cry1Ah蛋白表达情况,结果表明在不同遗传背景玉米自交系和杂交种中Cry1Ah蛋白表达没有显著差异;田间人工接虫和室内玉米螟抗虫性鉴定结果表明,不同遗传背景的转基因玉米高抗玉米螟,室内接虫后4 d幼虫死亡率达到100%;对不同遗传背景转基因玉米HGK60进行农艺性状分析,结果显示与受体对照玉米相比,两者之间农艺性状没有显著差异,转基因玉米HGK60可用于抗虫玉米品种的选育。
李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47.
LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds[J]. Biotechnology Bulletin, 2023, 39(1): 40-47.
图1 利用转化体特异性PCR鉴定4个转基因自交系和2个杂交组合 M:DNA marker;CK+:以质粒pm4AhG2为模板的阳性对照;CK-:以郑58基因组DNA为模板的阴性对照;blank:以ddH2O为模板空白对照;1-3:HGK60-郑58;4-6:HGK60-昌7-2;7-9:HGK60-lx03-2;10-12:HGK60-lx05-4;13-15:HGK60-郑单958;16-18:HGK60-鲁单9066
Fig. 1 Detection of 4 transgenic inbred lines and 2 hybrid combinations using event-special PCR M: DNA marker; CK+ : positive control; CK-: negative control; CK-(blank): ddH2O as template; 1-3: HGK60-Zheng 58; 4-6: HGK60-Chang 7-2; 7-9: HGK60 lx03-2; 10-12: HGK60-lx05-4; 13-15: HGK60-Zhengdan 958; 16-18: HGK60-ludan 9066
玉米材料 Corn material | 2020年海南三亚 Sanya, Hainan in 2020 | 2021年河北廊坊 Langfang, Hebei in 2021 | 2021年海南三亚 Sanya, Hainan in 2022 | |||
---|---|---|---|---|---|---|
3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | 3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | 3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | |
HGK60-郑58 | 100.00±0.00 | - | 100.00±0.00 | - | 91.67±4.17 | 100.00±0.00 |
HGK60-昌7-2 | 100.00±0.00 | - | 100.00±0.00 | - | 93.06±2.41 | 100.00±0.00 |
HGK60-lx03-2 | 100.00±0.00 | - | 100.00±0.00 | - | 97.22±2.41 | 100.00±0.00 |
HGK60-lx05-4 | 100.00±0.00 | - | 100.00±0.00 | - | 94.44±2.41 | 100.00±0.00 |
HGK60-郑单958 | 100.00±0.00 | - | 100.00±0.00 | - | 94.44±2.41 | 100.00±0.00 |
HGK60-鲁单9066 | 100.00±0.00 | - | 100.00±0.00 | - | 98.61±2.41 | 100.00±0.00 |
非转基因玉米-郑58 | 1.39±2.41 | 1.39±2.41 | 0.00±0.00 | 0.00±0.00 | 5.56±2.41 | 5.56±2.41 |
表1 亚洲玉米螟室内生测结果
Table 1 Results of laboratory bioassay of Asian corn borer(Ostrinia furnacalis)
玉米材料 Corn material | 2020年海南三亚 Sanya, Hainan in 2020 | 2021年河北廊坊 Langfang, Hebei in 2021 | 2021年海南三亚 Sanya, Hainan in 2022 | |||
---|---|---|---|---|---|---|
3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | 3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | 3 d死亡率 3-day mortality rate/% | 4 d死亡率 4-day mortality rate/% | |
HGK60-郑58 | 100.00±0.00 | - | 100.00±0.00 | - | 91.67±4.17 | 100.00±0.00 |
HGK60-昌7-2 | 100.00±0.00 | - | 100.00±0.00 | - | 93.06±2.41 | 100.00±0.00 |
HGK60-lx03-2 | 100.00±0.00 | - | 100.00±0.00 | - | 97.22±2.41 | 100.00±0.00 |
HGK60-lx05-4 | 100.00±0.00 | - | 100.00±0.00 | - | 94.44±2.41 | 100.00±0.00 |
HGK60-郑单958 | 100.00±0.00 | - | 100.00±0.00 | - | 94.44±2.41 | 100.00±0.00 |
HGK60-鲁单9066 | 100.00±0.00 | - | 100.00±0.00 | - | 98.61±2.41 | 100.00±0.00 |
非转基因玉米-郑58 | 1.39±2.41 | 1.39±2.41 | 0.00±0.00 | 0.00±0.00 | 5.56±2.41 | 5.56±2.41 |
年代地点 Year and location | 转基因玉米 Transgenic maize | 抗性等级 Resistance level | 非转基因玉米 Non-transgenic maize | 抗性等级 Resistance level |
---|---|---|---|---|
2020年海南三亚 | HGK60-郑58 | 1.34±0.38a | 郑58 | 7.03±0.23b |
HGK60-昌7-2 | 1.31±0.57a | 昌7-2 | 6.34±0.23b | |
HGK60-lx03-2 | 1.48±0.35a | lx03-2 | 6.48±0.78b | |
HGK60-lx05-4 | 1.72±0.31a | lx05-4 | 6.95±0.49b | |
HGK60-郑单958 | 1.23±0.94a | 郑单958 | 6.67±0.69b | |
HGK60-鲁单9066 | 1.28±0.46a | 鲁单9066 | 6.89±0.87b | |
2021年河北廊坊 | HGK60-郑58 | 1.39±0.45a | 郑58 | 7.56±0.49b |
HGK60-昌7-2 | 1.78±0.30a | 昌7-2 | 6.63±0.71b | |
HGK60-lx03-2 | 1.48±0.45a | lx03-2 | 6.93±0.59b | |
HGK60-lx05-4 | 1.42±0.40a | lx05-4 | 7.01±0.52b | |
HGK60-郑单958 | 1.31±0.29a | 郑单958 | 6.85±0.27b | |
HGK60-鲁单9066 | 1.37±0.65a | 鲁单9066 | 6.42±0.68b | |
2021年海南三亚 | HGK60-郑58 | 1.21±0.71a | 郑58 | 6.21±0.18b |
HGK60-昌7-2 | 1.51±0.54a | 昌7-2 | 6.78±0.56b | |
HGK60-lx03-2 | 1.63±0.34a | lx03-2 | 6.97±0.72b | |
HGK60-lx05-4 | 1.51±0.11a | lx05-4 | 7.31±0.67b | |
HGK60-郑单958 | 1.18±0.54a | 郑单958 | 6.41±0.93b | |
HGK60-鲁单9066 | 1.23±0.43a | 鲁单9066 | 6.56±0.67b |
表2 小喇叭口期亚洲玉米螟的食叶级别
Table 2 Leaf feeding grades of the Asian corn borer in the maize small trumpet stage
年代地点 Year and location | 转基因玉米 Transgenic maize | 抗性等级 Resistance level | 非转基因玉米 Non-transgenic maize | 抗性等级 Resistance level |
---|---|---|---|---|
2020年海南三亚 | HGK60-郑58 | 1.34±0.38a | 郑58 | 7.03±0.23b |
HGK60-昌7-2 | 1.31±0.57a | 昌7-2 | 6.34±0.23b | |
HGK60-lx03-2 | 1.48±0.35a | lx03-2 | 6.48±0.78b | |
HGK60-lx05-4 | 1.72±0.31a | lx05-4 | 6.95±0.49b | |
HGK60-郑单958 | 1.23±0.94a | 郑单958 | 6.67±0.69b | |
HGK60-鲁单9066 | 1.28±0.46a | 鲁单9066 | 6.89±0.87b | |
2021年河北廊坊 | HGK60-郑58 | 1.39±0.45a | 郑58 | 7.56±0.49b |
HGK60-昌7-2 | 1.78±0.30a | 昌7-2 | 6.63±0.71b | |
HGK60-lx03-2 | 1.48±0.45a | lx03-2 | 6.93±0.59b | |
HGK60-lx05-4 | 1.42±0.40a | lx05-4 | 7.01±0.52b | |
HGK60-郑单958 | 1.31±0.29a | 郑单958 | 6.85±0.27b | |
HGK60-鲁单9066 | 1.37±0.65a | 鲁单9066 | 6.42±0.68b | |
2021年海南三亚 | HGK60-郑58 | 1.21±0.71a | 郑58 | 6.21±0.18b |
HGK60-昌7-2 | 1.51±0.54a | 昌7-2 | 6.78±0.56b | |
HGK60-lx03-2 | 1.63±0.34a | lx03-2 | 6.97±0.72b | |
HGK60-lx05-4 | 1.51±0.11a | lx05-4 | 7.31±0.67b | |
HGK60-郑单958 | 1.18±0.54a | 郑单958 | 6.41±0.93b | |
HGK60-鲁单9066 | 1.23±0.43a | 鲁单9066 | 6.56±0.67b |
年代地点 Year and location | 农艺性状 Agronomy traits | HGK60-郑单958 HGK60-zhengdan 958 | 郑单958 Zhengdan 958 | HGK60-鲁单9066 HGK60-Ludan 9066 | 鲁单9066 Ludan 9066 |
---|---|---|---|---|---|
2020年海南三亚 | 株高 | 190.34±12.31a | 193.13±11.71a | 223.97±10.13a | 228.14±12.15a |
穗位高 | 90.44±5.87a | 92.15±6.87a | 101.08±7.81a | 103.78±11.57a | |
穗长 | 16.01±0.85a | 15.95±1.06a | 14.91±1.75a | 14.13±1.48a | |
穗粗 | 4.43±0.25a | 4.77±0.22a | 3.78±0.28a | 3.78±0.22a | |
穗行数 | 13.95±1.45a | 14.98±1.25a | 12.87±1.01a | 12.00±0.91a | |
秃尖长 | 0.42±0.31a | 0.44±0.33a | 0.44±0.25a | 0.46±0.37a | |
行粒数 | 38.64±3.43a | 38.21±2.23a | 39.84±4.75a | 38.85±4.52a | |
百粒重 | 27.13±2.22a | 26.24±3.24a | 22.41±1.83a | 23.22±2.33a | |
单株产量 | 152.74±7.13a | 150.82±12.81a | 112.65±13.04a | 115.84±12.91a | |
2021年河北廊坊 | 株高 | 248.04±10.87a | 250.72±10.96a | 294.77±11.14a | 288.28±12.64a |
穗位高 | 119.51±9.04a | 120.61±9.15a | 133.34±7.47a | 137.18±9.92a | |
穗长 | 19.81±1.22a | 18.94±1.41a | 21.64±2.33a | 22.05±0.87a | |
穗粗 | 4.85±0.32a | 4.81±0.26a | 4.65±0.24a | 4.65±0.16a | |
穗行数 | 15.62±1.27a | 15.81±1.47a | 13.76±1.21a | 13.85±1.56a | |
秃尖长 | 0.56±0.36a | 0.65±0.46a | 0.47±0.47a | 0.75±0.56a | |
行粒数 | 39.71±3.15a | 39.63±3.96a | 41.35±6.76a | 42.86±2.55a | |
百粒重 | 34.85±1.34a | 35.23±1.55a | 29.51±1.16a | 29.91±1.35a | |
单株产量 | 188.51±12.35a | 191.61±13.26a | 161.57±10.1a | 164.26±12.63a | |
2021年海南三亚 | 株高 | 187.34±11.23a | 188.24±13.42a | 224.01±11.24a | 226.89±11.26a |
穗位高 | 88.43±4.67a | 90.10±5.65a | 99.08±6.19a | 101.68±12.68a | |
穗长 | 15.93±0.45a | 16.02±1.23a | 14.92±2.03a | 14.61±1.39a | |
穗粗 | 4.35±0.21a | 4.43±0.18a | 3.56±0.30a | 3.61±0.32a | |
穗行数 | 14.01±1.14a | 14.83±1.34a | 12.73±1.34a | 12.34±0.56a | |
秃尖长 | 0.40±0.24a | 0.45±0.38a | 0.45±0.34a | 0.46±0.35a | |
行粒数 | 37.94±2.54a | 38.45±3.12a | 38.45±4.67a | 39.05±4.52a | |
百粒重 | 26.63±1.39a | 25.93±2.18a | 23.02±1.75a | 24.01±2.61a | |
单株产量 | 155.53±6.19a | 153.54±11.67a | 113.43±12.07a | 114.45±13.45a |
表3 转基因玉米杂交组合农艺性状分析
Table 3 Agronomic traits analysis of transgenic maize hybrid lines
年代地点 Year and location | 农艺性状 Agronomy traits | HGK60-郑单958 HGK60-zhengdan 958 | 郑单958 Zhengdan 958 | HGK60-鲁单9066 HGK60-Ludan 9066 | 鲁单9066 Ludan 9066 |
---|---|---|---|---|---|
2020年海南三亚 | 株高 | 190.34±12.31a | 193.13±11.71a | 223.97±10.13a | 228.14±12.15a |
穗位高 | 90.44±5.87a | 92.15±6.87a | 101.08±7.81a | 103.78±11.57a | |
穗长 | 16.01±0.85a | 15.95±1.06a | 14.91±1.75a | 14.13±1.48a | |
穗粗 | 4.43±0.25a | 4.77±0.22a | 3.78±0.28a | 3.78±0.22a | |
穗行数 | 13.95±1.45a | 14.98±1.25a | 12.87±1.01a | 12.00±0.91a | |
秃尖长 | 0.42±0.31a | 0.44±0.33a | 0.44±0.25a | 0.46±0.37a | |
行粒数 | 38.64±3.43a | 38.21±2.23a | 39.84±4.75a | 38.85±4.52a | |
百粒重 | 27.13±2.22a | 26.24±3.24a | 22.41±1.83a | 23.22±2.33a | |
单株产量 | 152.74±7.13a | 150.82±12.81a | 112.65±13.04a | 115.84±12.91a | |
2021年河北廊坊 | 株高 | 248.04±10.87a | 250.72±10.96a | 294.77±11.14a | 288.28±12.64a |
穗位高 | 119.51±9.04a | 120.61±9.15a | 133.34±7.47a | 137.18±9.92a | |
穗长 | 19.81±1.22a | 18.94±1.41a | 21.64±2.33a | 22.05±0.87a | |
穗粗 | 4.85±0.32a | 4.81±0.26a | 4.65±0.24a | 4.65±0.16a | |
穗行数 | 15.62±1.27a | 15.81±1.47a | 13.76±1.21a | 13.85±1.56a | |
秃尖长 | 0.56±0.36a | 0.65±0.46a | 0.47±0.47a | 0.75±0.56a | |
行粒数 | 39.71±3.15a | 39.63±3.96a | 41.35±6.76a | 42.86±2.55a | |
百粒重 | 34.85±1.34a | 35.23±1.55a | 29.51±1.16a | 29.91±1.35a | |
单株产量 | 188.51±12.35a | 191.61±13.26a | 161.57±10.1a | 164.26±12.63a | |
2021年海南三亚 | 株高 | 187.34±11.23a | 188.24±13.42a | 224.01±11.24a | 226.89±11.26a |
穗位高 | 88.43±4.67a | 90.10±5.65a | 99.08±6.19a | 101.68±12.68a | |
穗长 | 15.93±0.45a | 16.02±1.23a | 14.92±2.03a | 14.61±1.39a | |
穗粗 | 4.35±0.21a | 4.43±0.18a | 3.56±0.30a | 3.61±0.32a | |
穗行数 | 14.01±1.14a | 14.83±1.34a | 12.73±1.34a | 12.34±0.56a | |
秃尖长 | 0.40±0.24a | 0.45±0.38a | 0.45±0.34a | 0.46±0.35a | |
行粒数 | 37.94±2.54a | 38.45±3.12a | 38.45±4.67a | 39.05±4.52a | |
百粒重 | 26.63±1.39a | 25.93±2.18a | 23.02±1.75a | 24.01±2.61a | |
单株产量 | 155.53±6.19a | 153.54±11.67a | 113.43±12.07a | 114.45±13.45a |
[1] | 刘杰, 李天娇, 姜玉英, 等. 2020年我国玉米主要病虫害发生特点[J]. 中国植保导刊, 2021, 41(8): 30-35. |
Liu J, Li TJ, Jiang YY, et al. Occurrence characteristics of main maize diseases and insect pests in China in 2020[J]. China Plant Prot, 2021, 41(8): 30-35. | |
[2] | 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1): 114-119. |
International Service for the Acquisition of Agri-biotech Applications. Development trend of global biotechnology/GM crop commercialization in 2019[J]. China Biotechnol, 2021, 41(1): 114-119. | |
[3] | Xie W, Ali T, Cui Q, et al. Economic impacts of commercializing insect-resistant GM maize in China[J]. China Agric Econ Rev, 2017, 9(3): 340-354. |
[4] | 梁晋刚, 张旭冬, 毕研哲, 等. 转基因抗虫玉米发展现状与展望[J]. 中国生物工程杂志, 2021, 41(6): 98-104. |
Liang JG, Zhang XD, Bi YZ, et al. Development status and prospect of genetically modified insect-resistant maize[J]. China Biotechnol, 2021, 41(6): 98-104. | |
[5] |
Li YH, Hallerman EM, Wu KM, et al. Insect-resistant genetically engineered crops in China: development, application, and prospects for use[J]. Annu Rev Entomol, 2020, 65: 273-292.
doi: 10.1146/annurev-ento-011019-025039 pmid: 31594412 |
[6] |
Xue J, Liang GM, Crickmore N, et al. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects[J]. FEMS Microbiol Lett, 2008, 280(1): 95-101.
doi: 10.1111/j.1574-6968.2007.01053.x URL |
[7] |
Xue J, Zhou Z, Song F, et al. Identification of the minimal active fragment of the Cry1Ah toxin[J]. Biotechnol Lett, 2011, 33(3): 531-537.
doi: 10.1007/s10529-010-0452-0 pmid: 21046197 |
[8] | 戴军, 李秀影, 朱莉, 等. 转Bt cry1Ah基因抗虫玉米的分子检测及农艺性状分析[J]. 生物技术通报, 2014(5): 62-68. |
Dai J, Li XY, Zhu L, et al. Molecular detection and agronomic traits analysis of insect-resistant transgenic maize harboring Bt cry1Ah gene[J]. Biotechnol Bull, 2014(5): 62-68. | |
[9] |
宋苗, 汪海, 张杰, 等. 转Bt cry1Ah基因抗虫玉米对亚洲玉米螟、棉铃虫和黏虫的抗性评价[J]. 生物技术通报, 2016, 32(6): 69-75.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.011 |
Song M, Wang H, Zhang J, et al. Resistance evaluation of Bt cry1Ah-transgenic maize to Asian corn borer, cotton bollworm and oriental armyworm[J]. Biotechnol Bull, 2016, 32(6): 69-75. | |
[10] |
梁海生, 李梦桃, 李圣彦, 等. 转Bt基因抗虫玉米HGK60的农艺性状分析[J]. 生物技术通报, 2018, 34(7): 92-100.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0219 |
Liang HS, Li MT, Li SY, et al. Agronomic traits analysis of transgenic Bt cry1Ah maize HGK60 line[J]. Biotechnol Bull, 2018, 34(7): 92-100. | |
[11] | 卢美贞, 崔海瑞, 姚艳玲, 等. 影响苏云金芽孢杆菌基因在转基因植物中表达的因素[J]. 细胞生物学杂志, 2005, 27(5): 509-513. |
Lu MZ, Cui HR, Yao YL, et al. Factors affecting expression of Bacillus thuringiensis genes in transgenic plants[J]. Chin J Coll Biol, 2005, 27(5): 509-513. | |
[12] | 杨宙, 吕再萍, 黄仁良, 等. Bt蛋白在水稻不同遗传背景下的含量及对抗虫性的影响[J]. 植物保护学报, 2017, 44(6): 1017-1023. |
Yang Z, Lü ZP, Huang RL, et al. Content of Bt protein in different backgrounds of rice and its effect on insect resistance[J]. J Plant Prot, 2017, 44(6): 1017-1023. | |
[13] | 王冬妍, 王振营, 何康来, 等. Bt玉米杀虫蛋白含量的时空表达及对亚洲玉米螟的杀虫效果[J]. 中国农业科学, 2004, 37(8): 1155-1159. |
Wang DY, Wang ZY, He KL, et al. Temporal and spatial expression of CrylAb toxin in transgenic Bt corn and its effects on Asian corn borer, Ostrinia furnacalis(guenee)[J]. Sci Agric Sin, 2004, 37(8): 1155-1159. | |
[14] | 刘晓贝, 白树雄, 王振营, 等. 转cry1Ab/cry1Ac基因玉米Cry1Ab/Cry1Ac融合蛋白表达及对亚洲玉米螟的室内杀虫效果[J]. 昆虫学报, 2020, 63(10): 1201-1206. |
Liu XB, Bai SX, Wang ZY, et al. Expression of Cry1Ab/Cry1Ac fusion protein in the transgenic cry1Ab/cry1Ac maize and its control efficacy against the Asian corn borer, Ostrinia furnacalis(Lepidoptera: Crambidae), in the laboratory[J]. Acta Entomol Sin, 2020, 63(10): 1201-1206. | |
[15] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. |
Lin M. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Curr Biotechnol, 2021, 11(4): 405-417. | |
[16] |
Venkatesh TV, Cook K, Liu B, et al. Compositional differences between near-isogenic GM and conventional maize hybrids are associated with backcrossing practices in conventional breeding[J]. Plant Biotechnol J, 2015, 13(2): 200-210.
doi: 10.1111/pbi.12248 pmid: 25196222 |
[17] | 夏兰芹, 王远, 郭三堆. 外源基因在转基因植物中的表达与稳定性[J]. 生物技术通报, 2000(3): 8-12. |
Xia LQ, Wang Y, Guo SD. The stability of the expression of foreign genes in transgenic plants[J]. Biotechnol Inf, 2000(3): 8-12. | |
[18] | 孙国清. 不同抗虫棉品种杀虫蛋白表达研究及影响抗虫性分析[D]. 乌鲁木齐: 新疆农业大学, 2010. |
Sun GQ. Study on expression and influencing factor of Bt insecticidal protein in transgenic insect-resistant cotton[D]. Urumqi: Xinjiang Agricultural University, 2010. | |
[19] | 王培, 何康来, 王振营, 等. 转cry1Ac玉米对亚洲玉米螟的抗性评价[J]. 植物保护学报, 2012, 39(5): 395-400. |
Wang P, He KL, Wang ZY, et al. Evaluating transgenic cry1Ac maize for resistance to Ostrinia furnacalis(Guenée)[J]. J Plant Prot, 2012, 39(5): 395-400. |
[1] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
[2] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[3] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[4] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[5] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[6] | 王翠翠, 傅达奇. 泛素-蛋白酶体系统影响植物农艺性状的研究进展[J]. 生物技术通报, 2023, 39(1): 72-83. |
[7] | 杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望[J]. 生物技术通报, 2022, 38(4): 58-71. |
[8] | 焦悦, 韩宇, 杨桥, 黄耀辉, 安吉翠, 杨亚洲, 叶纪明. 全球转基因玉米商业化发展态势概述及启示[J]. 生物技术通报, 2021, 37(4): 164-176. |
[9] | 温洪涛, 李夏莹, 杨洋, 陈子言, 丁一佳, 张秀杰, 张瑞英. 玉米转基因成分筛查策略[J]. 生物技术通报, 2020, 36(5): 39-47. |
[10] | 王颢潜, 肖芳, 杨蕾, 缪青梅, 张旭冬, 张秀杰. 转基因玉米双抗12-5转化体特异性PCR方法验证结果分析[J]. 生物技术通报, 2020, 36(5): 48-55. |
[11] | 杨镇州, 刘刚, 许丽. 基于RNAi技术的转基因玉米逆转录数字PCR检测方法[J]. 生物技术通报, 2020, 36(5): 56-63. |
[12] | 李葱葱, 谢苹, 董立明, 夏蔚, 兰青阔, 闫伟, 龙丽坤, 李飞武. 抗虫耐除草剂玉米GH5112E-117C定性PCR检测方法[J]. 生物技术通报, 2020, 36(5): 64-67. |
[13] | 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展[J]. 生物技术通报, 2020, 36(12): 155-169. |
[14] | 李爱国, 李积铭, 李和平, 刘桂华, 宋聪敏, 武军艳. 适宜河北省旱寒区的冬油菜品种的筛选[J]. 生物技术通报, 2020, 36(1): 95-100. |
[15] | 王翠云, 刘艳, 刘允军. 外源基因在转基因玉米中的整合位点分析[J]. 生物技术通报, 2019, 35(3): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||