生物技术通报 ›› 2017, Vol. 33 ›› Issue (7): 15-21.doi: 10.13560/J.cnki.biotech.bull.1985.2017-0099
姜敏,李魏,董铮,李利华,戴良英
收稿日期:
2017-02-17
出版日期:
2017-07-11
发布日期:
2017-07-11
作者简介:
姜敏,女,硕士,研究方向:植物-微生物分子互作;E-mail:j_min@sina.com
基金资助:
JIANG Min, LI Wei, DONG Zheng ,LI Li-hua ,DAI Liang-ying
Received:
2017-02-17
Published:
2017-07-11
Online:
2017-07-11
摘要: 光敏色素是红光和远红光受体,不但在植物光形态建成中扮演着重要的角色,还参与调控植物抗逆信号通路。阐述了光敏色素及其互作的转录因子通过诱导植物激素信号途径调控植物对病原菌、害虫等生物胁迫的反应及作用机制,以及光敏色素调控植物对临近植物的竞争胁迫、干旱、低温、高温等非生物胁迫反应的作用机制研究进展,并讨论与展望了光敏色素研究领域所面临的挑战与发展方向。
姜敏,李魏,董铮,李利华,戴良英. 光敏色素对植物抗逆反应的调控研究进展[J]. 生物技术通报, 2017, 33(7): 15-21.
JIANG Min, LI Wei, DONG Zheng ,LI Li-hua ,DAI Liang-ying. Recent Advances on the Regulation of Phytochrome in Plant Defense Resistance[J]. Biotechnology Bulletin, 2017, 33(7): 15-21.
[1] Wu L, Yang HQ. Cryptochrome1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis[J] . Molecular Plant, 2010, 3(3):539-548. [2] Wang H, Wang H. Phytochrome signaling:Time to tighten up the loose ends[J] . Molecular Plant, 2015, 8(4):540-551. [3] Wang Y, Maruhnich SA, Mageroy MH, et al. Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths[J] . Planta, 2013, 237(1):225-237. [4] Sullivan JA, Deng XW. From seed to seed:the role of photorecep-tors in Arabidopsis development[J] . Developmental Biology, 2003, 260(2):289-297. [5] Karniol B, Wagner JR, Walker JM, et al. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors[J] . Biochemical J, 2005, 392(1):103-116. [6] Mathews S, Burleigh JG, Donoghue MJ. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms[J] . Molcular Biology, 2003, 20(7):1087-1097. [7] Ulijasz AT, Cornilescu G, Cornilescu CC, et al. Structural basis for the photoconversion of a phytochrome to the activated Pfr form[J] . Nature, 2010, 463(7278):250-254. [8] 王静, 王艇. 高等植物光敏色素的分子结构、生理功能和进化特征[J] . 植物学报, 2007, 24(5):649-658. [9] 杨玉珍, 袁秀云. 光敏色素分子及其信号转导途径[J] . 植物学通报, 2005, 16(5):586-588. [10] 岳晶, 管利萍, 孟思远, 等. 光敏色素信号通路中磷酸化修饰研究进展[J] . 植物学报, 2015, 50(2):241-254. [11] Clack T, Shokry A, Moffet M, et al. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor[J] . Plant Cell, 2009, 21(3):786-799. [12] Xie XZ, Xue YJ, Zhou JJ, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J] . Molecular Plant, 2011, 4(4):688-696. [13] Kazan K, Manners JM. The interplay between light and jasmonate signalling during defence and development[J] . Journal of Experimental Botany, 2011, 62(12):4087-4100. [14] Griebel T, Zeier J. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis:phytochrome signaling controls systemic acquired resistance rather than local defense[J] . Plant Physiology, 2008, 147(2):790-801. [15] Wang W, Tang W, Ma T, et al. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis[J] . Journal of Integrative Plant Biology, 2016, 58(1):91-103. [16] Kidd BN, Edgar CI, Kumar KK, et al. The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis[J] . Plant Cell, 2009, 21(8):2237-2252. [17] I?igo S1, Alvarez MJ, Strasser B, et al. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis[J] . Plant J, 2012, 69(4):601-612. [18] Kumar SV, Lucyshyn D, Jaeger KE, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J] . Nature, 2012, 484(7393):242-245. [19] Gangappa SN, Berriri S, Kumar SV. PIF4 coordinates thermosen-sory growth and immunity in Arabidopsis[J] . Current Biology, 2017, 27(2):243-249. [20] Wang H, Jiang YP, Yu HJ, et al. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants[J] . European Journal of Plant Pathology, 2010, 127(1):125-135. [21] Yang YX, Wang MM, Yin YL, et al. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants[J]. BMC Genomics, 2015, 16(1):1-16. [22]Ballaré CL. Illuminated behaviour:phytochrome as a key regulator of light foraging and plant anti-herbivore defence[J]. Plant Cell Environment, 2009, 32(6):713-725. [23]Izaguirre MM, Mazza CA, Biondini M, et al. Remote sensing of future competitors:impacts on plant defenses[J]. Proceedings of the National Academy of Sciences of United States of America, 2006, 103:7170-7174. [24]Campos ML, Yoshida Y, Major IT, et al. Rewiring of jasmonate and phytochrome B signaling uncouples plant growth-defense tradeoffs[J]. Nature Communications, 2016, 7:12570. [25]Zhai Q, Li CB, Zheng W, et al. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis[J]. Plant Cell Physiology, 2007, 48(7):1061-1071. [26]Moreno JE, Tao Y, Chory J, et al. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity[J]. Proceedings of the National Academy of Sciences of United States of America, 2009, 106(12):4935-4940. [27]杨有新, 王峰, 蔡加星, 等. 光质和光敏色素在植物逆境响应中的作用研究进展[J]. 园艺学报, 2014, 41(9):1861-1872. [28]Ballaré CL. Light regulation of plant defense[J]. Annual Review of Plant Biology, 2014, 65(1):335-363. [29]Roig-Villanova I, Martínez-García JF. Plant responses to vegetation proximity:A whole liife avoiding shade[J]. Frontiers in Plant Science, 2016, 7:236. [30]周峰. 植物防御反应及其光信号调控途径[J]. 北方园艺, 2015, 17:179-182. [31]Martínez-García JF, Gallemí M, Molina-Contreras MJ, et al. The shade avoidance syndrome in Arabidopsis:the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade[J]. PLoS One, 2014, 9(10):e109275. [32] Franklin KA. Shade avoidance[J]. New Phytologist, 2008, 179(4):930-944. [33]Martinez-Garcia JF, Galstyan A, Salla-Martret M, et al. Regulatory components of shade avoidance syndrome[J]. Advances in Botanical Research, 2010, 53:65-116. [34]Roig-Villanova I, Bou-Torrent J, Galstyan A, et al. Interaction of shade avoidance and auxin responses:A role for two novel atypical bHLH proteins[J]. EMBO J, 2007, 26(22):4756-4767. [35]Hornitschek P, Kohnen MV, Lorrain S, et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling[J]. The Plant Journal:for Cell and Molecular Biology, 2012, 71(5):699-711. [36]Hornitschek P, Lorrain S, Zoete V, et al. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers[J]. The EMBO Journal, 2009, 28(24):3893-3902. [37]Hao Y, Oh E, Choi G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3):688-697. [38]Rolauffs S, Fackendahl P, Sahm J, et al. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio[J]. Plant Physiology, 2012, 160(4):2015-2027. [39]Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice[J]. Plant Molecular Biology, 2012, 78(3):289-300. [40] Wang FF, Lian HL, Kang CY, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana[J]. Molecular Plant, 2010, 3(1):246-259. [41]Casson SA, Hetherington AM. Phytochrome B is required for light-mediated systemic control of stomatal development[J]. Current Biology, 2014, 24(11):1216-1221. [42]Boccalandro HE, Rugnone ML, Moreno JE, et al. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis[J]. Plant Physiology, 2009, 150(2):1083-1092. [43]González CV, Ibarra SE, Piccoli PN, et al. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana[J]. Plant Cell Environment, 2012, 35(11):1958-1968. [44]Boggs JZ, Loewy K, Bibee K, et al. Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana[J]. Plant Growth Regulation, 2010, 60(3):77-81. [45]Shamim Z, Rashid B, Rahman S, et al. Expression of drought tolerance in transgenic cotton[J]. Scienceasia, 2013, 39(1):1-11. [46]Kim HJ, Kim YK, Park JY, et al. Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element(C/DRE)in Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2002, 29(6):693-704. [47]He YN, Li YP, Cui LX, et al. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice[J]. Frontiers in Plant Science, 2016, 7:1963. [48]Franklin KA, Whitelam GC. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature Genetics, 2007, 39(11):1410-1413. [49]Badawi M, Reddy YV, Agharbaoui Z, et al. Structure and functional analysis of wheat ICE(inducer of CBF expression)genes[J]. Plant Cell Physiology, 2008, 49(8):1237-1249. [50]Lee CM, Thomashow MF. Photoperiodic regulation of the C-repeat binding factor(CBF)cold acclimation pathway and freezing tolerance in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of United States of America, 2012, 109(37):15054-15063. [51]Crawford AJ, McLachlan DH, Hetherington AM, et al. High temperature exposure increases plant cooling capacity[J]. Current Biology, 2012, 22(10):396-397. [52]Franklin KA, Lee SH, Patel D, et al. Phytochrome-interacting factor 4(PIF4)regulates auxin biosynthesis at high temperature[J]. Proceedings of the National Academy of Sciences of United States of America, 2011, 108(50):20231-20235. [53]Press MO, Lanctot A, Queitsch C. PIF4 and ELF3 act independently in Arabidopsis thaliana thermoresponsive flowering[J]. PLoS One, 2016, 11(8):e0161791. [54]Foreman J, Johansson H, Hornitschek P, et al. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures[J]. The Plant Journal, 2011, 65(3):441-452. [55]Ma D, Li X, Guo Y, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proceedings of the National Academy of Sciences of United States of America, 2016, 113(1):224-229. [56]Box MS, Huang BE, Domijan M, et al. ELF3 controls thermoresponsive growth in Arabidopsis[J]. Current Biology, 2015, 25(2):194-199. [57]Nieto C, López-Salmerón V, Davière JM, et al. ELF3-PIF4 interaction regulates plant growth independently of the evening complex[J]. Current Biology, 2015, 25(2):187-193. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[13] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[14] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
[15] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 965
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||