生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 228-241.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1172
徐伟芳1,2(), 李贺宇1, 张慧1, 何仔昂1, 高文恒1, 谢紫洋1, 王传文3, 尹登科1()
收稿日期:
2023-12-13
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
尹登科,男,博士,教授,研究方向:微生物次级代谢产物;E-mail: yindengke@ahtcm.edu.cn作者简介:
徐伟芳,女,博士,讲师,研究方向:药用植物病害生物防控;E-mail: xuweifang@ahtcm.edu.cn
基金资助:
XU Wei-fang1,2(), LI He-yu1, ZHANG Hui1, HE Zi-ang1, GAO Wen-heng1, XIE Zi-yang1, WANG Chuan-wen3, YIN Deng-ke1()
Received:
2023-12-13
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】研究潜在生防细菌HX0037对栝楼炭疽病的防病能力,并探究其生防机制。【方法】采用平板对峙法测定HX0037对栝楼炭疽菌(Colletotrichum gloeosporioides)、枣炭疽菌(Collettrichum coccodes)、梨炭疽菌(Colletotrichum fructicola)和苹果炭疽菌(Cryptosporiopsis malicorticis)的拮抗活性;离体接种法评价其对栝楼叶片炭疽病和果实炭疽病的防治效果;结合形态学、生理生化特征和全基因组的序列分析结果,确定生防细菌的分类地位,并预测其次级代谢产物;采用酸沉淀法提取脂肽类化合物,并对其进行高效液相色谱串联质谱分析(LC-MS);最后通过观察生防细菌所产脂肽对栝楼炭疽病菌菌株生长和菌丝形态的影响,以及检测该菌株产酶和铁载体能力,探究可能的生防机制。【结果】HX0037菌株对4种瓜果炭疽病菌均有不同程度的抑菌活性,其中对栝楼炭疽病菌的抑菌效果最好,其能明显改变病菌细胞膜的通透性;与单独接种病菌的栝楼组相比,接种HX0037菌株能显著减小栝楼叶片炭疽病和栝楼果实炭疽病的病斑面积,其防病效果分别为61.50%和52.51%;HX0037菌株被进一步鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),其基因组中包含12个次级代谢产物基因簇,它还具备产生纤维素酶、蛋白酶、淀粉酶和铁载体的能力;从HX0037代谢物中分离获得的脂肽导致栝楼炭疽病菌的菌丝发生扭曲、膨大等畸变现象,经LC-MS鉴定,该脂肽粗提物中含有表面活性素和丰原素。【结论】解淀粉芽孢杆菌HX0037具有良好的抑制炭疽病菌生长的能力,有望被进一步开发为生物农药用于栝楼炭疽病的绿色防控。
徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241.
XU Wei-fang, LI He-yu, ZHANG Hui, HE Zi-ang, GAO Wen-heng, XIE Zi-yang, WANG Chuan-wen, YIN Deng-ke. Efficacy and Its Mechanism of Bacterial Strain HX0037 on the Control of Anthracnose Disease of Trichosanthes kirilowii Maxim[J]. Biotechnology Bulletin, 2024, 40(4): 228-241.
培养基名称Name of culture medium | 组分Component/(g·L-1) |
---|---|
马铃薯葡萄糖培养基Potato dextrose medium, PDB | 马铃薯200.0,葡萄糖20.0 |
LB培养基Luria-Bertani medium | 胰蛋白胨10.0,酵母粉5.0,氯化钠10.0 |
PDB改良培养基Modified potato dextrose broth | 马铃薯200.0,麦芽糖20.0,蛋白胨10.0,硫酸铵5.0,磷酸氢二钠1.5 |
纤维素酶检测培养基Cellulase assay medium | 羧甲基纤维素钠 2.0,硫酸铵 2.0,磷酸二氢钾 1.0,硫酸镁 0.5,刚果红 0.1 |
蛋白酶检测培养基Protease assay medium | 葡萄糖15.0,脱脂奶粉20.0,氯化钾 0.5,硫酸镁 0.5 |
淀粉酶检测培养基Amylase assay medium | 牛肉膏5.0,蛋白胨10.0,氯化钠 5.0,可溶性淀粉10.0 |
铁载体检测培养基主要成分Siderophore assay medium | 葡萄糖4.0,硝酸钾0.2,硫酸镁 0.1,氯化钠0.1,磷酸氢二钾 0.1,硫酸亚铁 0.002 |
Landy发酵培养基Landy fermentation medium | 葡萄糖20.0,谷氨酸钠 5.0, 酵母粉1.0, 磷酸二氢钾 1.0,硫酸镁 0.5,氯化钾 0.5,硫酸锰 0.000 05,硫酸铜 0.000 16,硫酸亚铁 0.000 15,苯丙氨酸 0.02 |
表1 实验所需的培养基配方
Table 1 Formulations of media required for the experiments
培养基名称Name of culture medium | 组分Component/(g·L-1) |
---|---|
马铃薯葡萄糖培养基Potato dextrose medium, PDB | 马铃薯200.0,葡萄糖20.0 |
LB培养基Luria-Bertani medium | 胰蛋白胨10.0,酵母粉5.0,氯化钠10.0 |
PDB改良培养基Modified potato dextrose broth | 马铃薯200.0,麦芽糖20.0,蛋白胨10.0,硫酸铵5.0,磷酸氢二钠1.5 |
纤维素酶检测培养基Cellulase assay medium | 羧甲基纤维素钠 2.0,硫酸铵 2.0,磷酸二氢钾 1.0,硫酸镁 0.5,刚果红 0.1 |
蛋白酶检测培养基Protease assay medium | 葡萄糖15.0,脱脂奶粉20.0,氯化钾 0.5,硫酸镁 0.5 |
淀粉酶检测培养基Amylase assay medium | 牛肉膏5.0,蛋白胨10.0,氯化钠 5.0,可溶性淀粉10.0 |
铁载体检测培养基主要成分Siderophore assay medium | 葡萄糖4.0,硝酸钾0.2,硫酸镁 0.1,氯化钠0.1,磷酸氢二钾 0.1,硫酸亚铁 0.002 |
Landy发酵培养基Landy fermentation medium | 葡萄糖20.0,谷氨酸钠 5.0, 酵母粉1.0, 磷酸二氢钾 1.0,硫酸镁 0.5,氯化钾 0.5,硫酸锰 0.000 05,硫酸铜 0.000 16,硫酸亚铁 0.000 15,苯丙氨酸 0.02 |
病原菌 Pathogenic bacterium | 抑菌率 Inhibition rate/%(x±s, n=3) |
---|---|
栝楼炭疽病菌C. gloeosporioides | 57.59±0.00a |
梨炭疽病菌C. fructicola | 38.97±0.01c |
枣炭疽病菌C. coccodes | 48.54±0.01b |
苹果炭疽病菌C. malicorticis | 34.27±0.01d |
表2 HX0037菌株对4种瓜果炭疽病菌的拮抗作用
Table 2 Antagonistic activity of strain HX0037 against four pathogens of fruit anthracnose disease
病原菌 Pathogenic bacterium | 抑菌率 Inhibition rate/%(x±s, n=3) |
---|---|
栝楼炭疽病菌C. gloeosporioides | 57.59±0.00a |
梨炭疽病菌C. fructicola | 38.97±0.01c |
枣炭疽病菌C. coccodes | 48.54±0.01b |
苹果炭疽病菌C. malicorticis | 34.27±0.01d |
图1 HX0037菌株对栝楼炭疽病菌的拮抗作用(比例尺=10 µm) A:栝楼炭疽病菌在PDA平板上的菌落形态(A1:正常栝楼炭疽病菌;A2:与HX0037菌悬液对峙培养的栝楼炭疽病菌;A3:在含HX0037发酵上清液培养基上生长的栝楼炭疽病菌);B:经HX0037处理的栝楼炭疽病菌的PI染色结果
Fig. 1 Antagonistic activity of strain HX0037 against C. gloeosporioides(Bars=10 µm) A: Colony morphology of C. gloeosporioides on PDA medium(A1: Normal C. gloeosporioides; A2: C. gloeosporioides co-cultured with HX0037 cell suspension; A3: C. gloeosporioides cultured on PDA medium containing HX0037 cell-free fermentation broth). B: PI staining of C. gloeosporioides treated with HX0037 cell suspension
图2 HX0037菌株对栝楼叶片炭疽病(A)和栝楼果实炭疽病(B)的离体生防效果
Fig. 2 Biological control effects of strain HX0037 on Trichosanthes leaf anthracnose disease(A)and fruit anthracnose disease(B)in vitro
图3 HX0037菌株的形态学特征(比例尺=10 µm) A:菌落形态;B:革兰氏染色;C:芽孢染色
Fig. 3 Morphological features of strain HX0037(Bars=10 µm) A: Colony morphology. B: Gram stain result. C: Spore stain result
检测项目 Test item | 检测结果 Test result |
---|---|
葡萄糖(产酸产气)Glucose(Producing acid and gas) | + |
乳糖 Lactose | + |
麦芽糖 Maltose | - |
甘露醇 Mannitol | - |
蔗糖 Sucrose | + |
蛋白胨水 Peptone water | - |
V-P试验Voges-Proskauer reaction | + |
西蒙氏柠檬酸盐 Symon's phosphate | + |
硫化氢 H2S production | - |
尿素 Urea | - |
半固体琼脂Semi-solid agar | - |
表3 HX0037菌株生理生化检测
Table 3 Physiological and biochemical detection of strain HX0037
检测项目 Test item | 检测结果 Test result |
---|---|
葡萄糖(产酸产气)Glucose(Producing acid and gas) | + |
乳糖 Lactose | + |
麦芽糖 Maltose | - |
甘露醇 Mannitol | - |
蔗糖 Sucrose | + |
蛋白胨水 Peptone water | - |
V-P试验Voges-Proskauer reaction | + |
西蒙氏柠檬酸盐 Symon's phosphate | + |
硫化氢 H2S production | - |
尿素 Urea | - |
半固体琼脂Semi-solid agar | - |
基因类型 Type | 数目 Number | 长度 Length/bp | 占基因组大小 Proportion in genome/% |
---|---|---|---|
CDS | 3 712 | 3 436 344 | 88.38 |
tRNA | 82 | 6 330 | 0.16 |
16S rRNA | 9 | 13 929 | 0.36 |
23S rRNA | 9 | 26 370 | 0.68 |
5S rRNA | 9 | 1 044 | 0.03 |
表4 HX0037菌株基因组结构概况
Table 4 General situation of genome structure of strain HX0037
基因类型 Type | 数目 Number | 长度 Length/bp | 占基因组大小 Proportion in genome/% |
---|---|---|---|
CDS | 3 712 | 3 436 344 | 88.38 |
tRNA | 82 | 6 330 | 0.16 |
16S rRNA | 9 | 13 929 | 0.36 |
23S rRNA | 9 | 26 370 | 0.68 |
5S rRNA | 9 | 1 044 | 0.03 |
基因簇Cluster | 类型Type | 开始From | 结束To | 最相似的基因簇 The most similar gene cluster | 相似度Similarity/% |
---|---|---|---|---|---|
Cluster1 | NRPS, betalactone | 1 | 101 972 | Most similar known cluster | 86 |
Cluster2 | TransAT-PKS | 165 428 | 266 126 | Fengycin | 100 |
Cluster3 | TransAT-PKS | 490 930 | 577 278 | Bacillaene | 100 |
Cluster4 | Terpene | 897 298 | 913 914 | Macrolactin | - |
Cluster5 | PKS-like | 998 755 | 1 039 999 | - | 7 |
Cluster6 | NRPS | 1 570 321 | 1 635 119 | ButirosinAB | 82 |
Cluster7 | Lanthipeptide-class-iii | 1 730 700 | 1 753 315 | Surfactin | 35 |
Cluster8 | Other | 2 237 949 | 2 279 367 | Locillomycin | 100 |
Cluster9 | Pipp-like,NRPS | 2 809 532 | 2 860 040 | Bacilysin | 100 |
Cluster10 | TransAT-PKS | 3 480 099 | 3 573 848 | Bacillibactin | 100 |
Cluster11 | T3PKS | 3 701 691 | 3 742 791 | Difficidin | - |
Cluster12 | Terpene | 3 806 279 | 3 828 162 | - | - |
表5 HX0037菌株次级代谢产物合成基因簇
Table 5 Secondary metabolite synthesis gene cluster of strain HX0037
基因簇Cluster | 类型Type | 开始From | 结束To | 最相似的基因簇 The most similar gene cluster | 相似度Similarity/% |
---|---|---|---|---|---|
Cluster1 | NRPS, betalactone | 1 | 101 972 | Most similar known cluster | 86 |
Cluster2 | TransAT-PKS | 165 428 | 266 126 | Fengycin | 100 |
Cluster3 | TransAT-PKS | 490 930 | 577 278 | Bacillaene | 100 |
Cluster4 | Terpene | 897 298 | 913 914 | Macrolactin | - |
Cluster5 | PKS-like | 998 755 | 1 039 999 | - | 7 |
Cluster6 | NRPS | 1 570 321 | 1 635 119 | ButirosinAB | 82 |
Cluster7 | Lanthipeptide-class-iii | 1 730 700 | 1 753 315 | Surfactin | 35 |
Cluster8 | Other | 2 237 949 | 2 279 367 | Locillomycin | 100 |
Cluster9 | Pipp-like,NRPS | 2 809 532 | 2 860 040 | Bacilysin | 100 |
Cluster10 | TransAT-PKS | 3 480 099 | 3 573 848 | Bacillibactin | 100 |
Cluster11 | T3PKS | 3 701 691 | 3 742 791 | Difficidin | - |
Cluster12 | Terpene | 3 806 279 | 3 828 162 | - | - |
图5 HX0037菌株基于16S rRNA(A)和gyrA(B)基因序列的系统进化树 括号中序号为GenBank的登录号;分支点上的数字代表Bootstrap值;标尺0.005、0.1代表0.5%和10%的核苷酸差异
Fig. 5 Phylogenetic tree of HX0037 strain based on 16S rDNA(A)and gyrA(B)sequence Numbers in parentheses is the GenBank accession numbers. Numbers at the nodes mean the Bootstrap value. The scale bar indicates 0.5% and 10% nucleotide substitution
菌株Strain | GenBank登录号GenBank No. | 平均核苷酸一致性ANI/% | GC含量GC conten t /% | 大小Size/bp |
---|---|---|---|---|
B. amyloliquefaciens L-H15 | CP010556 | 98.56 | 46.60 | 3 905 973 |
B. amyloliquefaciens S499 | CP014700 | 98.55 | 46.60 | 3 927 922 |
B. amyloliquefaciens EA19 | CP079834 | 98.55 | 40.20 | 3 964 177 |
B. amyloliquefaciens FZB42 | CP000560 | 97.78 | 46.48 | 3 918 596 |
B. subtilis BSD-2 | CP013654 | 79.91 | 43.88 | 4 030 837 |
B. subtilis 7PJ-16 | CP023409 | 79.87 | 43.28 | 4 209 045 |
B. licheniformis T5 | CP124852 | 76.48 | 46.16 | 4 247 430 |
B. licheniformis TAB7 | CP027789 | 76.46 | 45.82 | 4 367 367 |
B. megaterium HGS7 | CP065213 | 74.48 | 38.27 | 5 035 031 |
B. megaterium QM B1551 | CP001983 | 74.44 | 38.20 | 5 097 129 |
B. cereus ATCC 14579 | NC004722 | 74.23 | 35.30 | 5 097 129 |
表6 HX0037菌株及近缘菌株的平均核苷酸一致性(ANI)数值比较
Table 6 Comparisons ANI analysis of strain HX0037 and related Bacillus spp.
菌株Strain | GenBank登录号GenBank No. | 平均核苷酸一致性ANI/% | GC含量GC conten t /% | 大小Size/bp |
---|---|---|---|---|
B. amyloliquefaciens L-H15 | CP010556 | 98.56 | 46.60 | 3 905 973 |
B. amyloliquefaciens S499 | CP014700 | 98.55 | 46.60 | 3 927 922 |
B. amyloliquefaciens EA19 | CP079834 | 98.55 | 40.20 | 3 964 177 |
B. amyloliquefaciens FZB42 | CP000560 | 97.78 | 46.48 | 3 918 596 |
B. subtilis BSD-2 | CP013654 | 79.91 | 43.88 | 4 030 837 |
B. subtilis 7PJ-16 | CP023409 | 79.87 | 43.28 | 4 209 045 |
B. licheniformis T5 | CP124852 | 76.48 | 46.16 | 4 247 430 |
B. licheniformis TAB7 | CP027789 | 76.46 | 45.82 | 4 367 367 |
B. megaterium HGS7 | CP065213 | 74.48 | 38.27 | 5 035 031 |
B. megaterium QM B1551 | CP001983 | 74.44 | 38.20 | 5 097 129 |
B. cereus ATCC 14579 | NC004722 | 74.23 | 35.30 | 5 097 129 |
图6 HX0037菌株产酶能力及产铁载体能力检测 A:纤维素酶;B:蛋白酶;C:淀粉酶;D:铁载体
Fig. 6 Detection of enzyme-producing and siderophores-producing abilities of strain HX0037 A: Cellulase. B: Proteinase. C: Amylase. D: Sideropphore
图7 HX0037菌株所产脂肽对栝楼炭疽病菌的抑菌效果(A)及其菌丝形态的影响(B)(比例尺=10 µm)
Fig. 7 Antifungal effects(A)and mycelium features impacts(B)of lipopeptide produced by strain HX0037 against C. gloeosporioides(Bars=10 µm)
质量峰 Mass peak(m/z) | 碎片离子 Assignment | 参考文献 Reference |
---|---|---|
1 030.64 | Surfactin A C13[M+Na]+ | [ |
Surfactin B C14[M+Na]+ | [ | |
1 044.64 | Surfactin A C14[M+Na]+ | [ |
Surfactin B C15[M+Na]+ | [ | |
1 058.67 | Surfactin A C15[M+Na]+ | [ |
1 072.69 | Surfactin A C16[M+Na]+ | [ |
1 008.66 | Surfactin A C13[M+H]+ | [ |
1 022.67 | Surfactin A C14[M+H]+ | [ |
1 036.69 | Surfactin A C15[M+H]+ | [ |
1 050.71 | Surfactin A C16[M+H]+ | [ |
1 463.81 | Fengycin B C14[M+H]+ | [ |
Fengycin A C14[M+H]+ | [ | |
1 477.82 | Fengycin B C15[M+H]+ | [ |
Fengycin A C15[M+H]+ | [ | |
1 491.84 | Fengycin B C16[M+H]+ | [ |
Fengycin A C16[M+H]+ | [ |
表7 HX0037菌株产生的脂肽的HPLC-MS分析
Table 7 HPLC-MS analysis of lipopeptide produced by strain HX0037
质量峰 Mass peak(m/z) | 碎片离子 Assignment | 参考文献 Reference |
---|---|---|
1 030.64 | Surfactin A C13[M+Na]+ | [ |
Surfactin B C14[M+Na]+ | [ | |
1 044.64 | Surfactin A C14[M+Na]+ | [ |
Surfactin B C15[M+Na]+ | [ | |
1 058.67 | Surfactin A C15[M+Na]+ | [ |
1 072.69 | Surfactin A C16[M+Na]+ | [ |
1 008.66 | Surfactin A C13[M+H]+ | [ |
1 022.67 | Surfactin A C14[M+H]+ | [ |
1 036.69 | Surfactin A C15[M+H]+ | [ |
1 050.71 | Surfactin A C16[M+H]+ | [ |
1 463.81 | Fengycin B C14[M+H]+ | [ |
Fengycin A C14[M+H]+ | [ | |
1 477.82 | Fengycin B C15[M+H]+ | [ |
Fengycin A C15[M+H]+ | [ | |
1 491.84 | Fengycin B C16[M+H]+ | [ |
Fengycin A C16[M+H]+ | [ |
[1] | 韩慧莹, 刘桂荣. 张志远临证运用瓜蒌经验[J]. 中医杂志, 2021, 62(1): 16-18. |
Han HY, Liu GR. ZHANG Zhiyuan's experience in using Gualou(fructus trichosanthis)[J]. China J Chin Mater Med, 2021, 62(1): 16-18. | |
[2] | 张琪, 彭向前. 栝楼的活性成分及其药理作用的研究进展[J]. 山东化工, 2021, 50(14): 98-100. |
Zhang Q, Peng XQ. Research progress on active components and pharmacological effects of Trichosanthes kirilowii maxim[J]. Shandong Chem Ind, 2021, 50(14): 98-100. | |
[3] | 葛江洪. 潜山市瓜蒌产业发展的优势与建议[J]. 安徽农业科学, 2019, 47(16): 238-240. |
Ge JH. Advantages and suggestions on the development of Trichosanthes kirilowii maxim industry in Qianshan city[J]. J Anhui Agric Sci, 2019, 47(16): 238-240. | |
[4] | Zhang LX, Lin YF, Zhang L, et al. First report of anthracnose caused by Colletotrichum liaoningense on Trichosanthes kirilowii in China[J]. Plant Dis, 2022: PDIS07211363PDN. |
[5] |
Zhang LX, Song JH, Tan GJ, et al. Characterization of Colletotrichum gloeosporioides responsible for anthracnose disease of Trichosanthes kirilowii Maxim in central China[J]. Phytoparasitica, 2014, 42(4): 549-558.
doi: 10.1007/s12600-014-0393-6 URL |
[6] | 汪霞, 林一帆, 张立新. 栝楼主要病害及综合防治技术[J]. 特种经济动植物, 2021, 24(8): 40-41. |
Wang X, Lin YF, Zhang LX. Main diseases of Trichosanthes kirilowii and their integrated control techniques[J]. Spec Econ Anim Plants, 2021, 24(8): 40-41. | |
[7] | 林一帆, 李相汉, 李华, 等. 栝楼新品种‘皖蒌15号’[J]. 园艺学报, 2020, 47(S2): 3146-3147. |
Lin YF, Li XH, Li H, et al. A new Trichosanthes kirilowii variety ‘Wanlou No.15’[J]. Acta Hortic Sin, 2020, 47(S2): 3146-3147. | |
[8] | 李萍, 吴成方, 刘冬, 等. 安庆市瓜蒌用药现状及瓜蒌炭疽病菌室内药剂筛选试验[J]. 红河学院学报, 2019, 17(5): 127-129. |
Li P, Wu CF, Liu D, et al. Current status of fungicides use for Trichosanthes kirilowii in Anqing city and toxicity test of fungicides to colletootrichum orbiculare[J]. J Honghe Univ, 2019, 17(5): 127-129. | |
[9] | 胡显海, 周晓飞. 栝楼炭疽病的发生规律及防治方法[J]. 现代农业科技, 2006(11): 84-85. |
Hu XH, Zhou XF. Occurrence regularity and control methods of Trichosanthes kirilowii anthracnose[J]. Mod Agric Sci Technol, 2006(11): 84-85. | |
[10] | 徐劲峰, 檀根甲, 韩翔. 瓜蒌炭疽病发生危害及综合控制技术研究[J]. 安徽农业科学, 2006, 34(15): 3741, 3784. |
Xu JF, Tan GJ, Han X. Study on the occurrence and harm of Trichosanthes kirilowii anthracnose and its comprehensive control technology[J]. J Anhui Agric Sci, 2006, 34(15): 3741, 3784. | |
[11] | 韩翔. 瓜蒌炭疽菌的生理生态及病害防治的研究[D]. 合肥: 安徽农业大学, 2004. |
Han X. Studies on physiological and ecological characteristics of Mongolian snakegourd anthracnose pathogen and disease control[D]. Hefei: Anhui Agricultural University, 2004. | |
[12] |
王世伟, 王卿惠. 解淀粉芽孢杆菌相关功能机制研究进展[J]. 生物技术通报, 2020, 36(1): 150-159.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0786 |
Wang SW, Wang QH. Research advances in functional mechanisms of Bacillus amyloliquefacien[J]. Biotechnol Bull, 2020, 36(1): 150-159. | |
[13] |
Zouari I, Jlaiel L, Tounsi S, et al. Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds[J]. Biol Contr, 2016, 100: 54-62.
doi: 10.1016/j.biocontrol.2016.05.012 URL |
[14] | 姚佳明, 田亚平. 解淀粉芽孢杆菌抑菌肽的分离鉴定及其抑菌谱表征[J]. 食品科学, 2020, 41(16): 126-131. |
Yao JM, Tian YP. Isolation and identification of antimicrobial peptides produced by Bacillus amyloliquefaciens and characterization of their antibacterial spectra[J]. Food Sci, 2020, 41(16): 126-131. | |
[15] |
Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens[J]. J Appl Microbiol, 2010, 108(2): 386-395.
doi: 10.1111/j.1365-2672.2009.04438.x pmid: 19674188 |
[16] |
Wong JH, Hao J, Cao Z, et al. An antifungal protein from Bacillus amyloliquefaciens[J]. J Appl Microbiol, 2008, 105(6): 1888-1898.
doi: 10.1111/j.1365-2672.2008.03917.x pmid: 19120637 |
[17] |
An JY, Zhu WJ, Liu Y, et al. Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus[J]. Food Contr, 2015, 51: 278-282.
doi: 10.1016/j.foodcont.2014.11.038 URL |
[18] | 刘锋, 何群, 陈兴帮, 等. 贝莱斯芽孢杆菌ES2-4的生防潜力及全基因组分析[J]. 应用与环境生物学报, 2023, 29(6): 1459-1466. |
Liu F, He Q, Chen XB, et al. Biocontrol potential and complete genome analysis of Bacillus velezensis ES2-4[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(6): 1459-1466. | |
[19] | Xu WF, Sun T, Du JH, et al. Structure and ecological function of the soil microbiome associated with ‘Sanghuang’ mushrooms suffering from fungal diseases[J]. BMC Microbiol, 2023, 23(1): 218. |
[20] | 张紊玮, 王艳玲, 毕阳, 等. 一株马铃薯干腐病拮抗菌的筛选、鉴定及其生物防效[J]. 微生物学通报, 2018, 45(8): 1726-1736. |
Zhang WW, Wang YL, Bi Y, et al. Screening and identification of an antagonistic strain against potato dry rot[J]. Microbiol China, 2018, 45(8): 1726-1736. | |
[21] |
魏丽梅, 邹小文, 徐婷璐, 等. 农抗211对水稻纹枯病菌细胞膜和抗氧化酶活性的影响[J]. 核农学报, 2021, 35(5): 1084-1090.
doi: 10.11869/j.issn.100-8551.2021.05.1084 |
Wei LM, Zou XW, Xu TL, et al. Effects of antifungalmycin 211 on cell membrane and antioxidant enzyme activity of Rhizoctonia solani[J]. J Nucl Agric Sci, 2021, 35(5): 1084-1090. | |
[22] | 王若琳, 徐伟芳, 王飞, 等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143. |
Wang RL, Xu WF, Wang F, et al. Isolation and identification of an antagonistic endophytic bacterium from mulberry for biocontrol against Boeremia exigua[J]. Acta Microbiol Sin, 2019, 59(11): 2130-2143. | |
[23] | 陈帅康, 王彩霞, 施万斌, 等. 嗜果刀孢菌寄主范围的测定及PCR快速检测[J]. 林业科学研究, 2023, 36(6): 162-171. |
Chen SK, Wang CX, Shi WB, et al. Host determination of the Wil-sonomyces carpophilus of wild apricot forest of Tianshan and establishment of a rapid detection system[J]. For Res, 2023, 36(6): 162-171. | |
[24] |
章乐乐, 王冠, 柳凤, 等. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0908 |
Zhang LL, Wang G, Liu F, et al. Isolation, identification and biocontrol mechanism of antagonistic bacterium against anthracnose on mango caused by Colletotrichum gloeosporioides[J]. Biotechnol Bull, 2023, 39(4): 277-287. | |
[25] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 296. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001: 296. | |
[26] | Bergey DH, Holt JG. Bergey's Manual of determinative bacteriology[M]. 9th ed. Baltimore: Williams & Wilkins, 1994. |
[27] |
Xu WF, Ren HS, Ou T, et al. Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose[J]. Microb Ecol, 2019, 77(3): 651-663.
doi: 10.1007/s00248-018-1247-4 |
[28] | Medema MH, Blin K, Cimermancic P, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J]. Nucleic Acids Res, 2011, 39(Web Server issue): W339-W346. |
[29] |
刘龙, 荣华, 郑童童, 等. 莫海威芽孢杆菌对梨腐烂病的抑菌防病效果[J]. 中国农学通报, 2022, 38(18): 140-146.
doi: 10.11924/j.issn.1000-6850.casb2021-1050 |
Liu L, Rong H, Zheng TT, et al. Antifungal and control effect of Bacillus mojavensis on pear Valsa canker[J]. Chin Agric Sci Bull, 2022, 38(18): 140-146. | |
[30] | 姜军坡. 芽孢杆菌源抗肿瘤活性脂肽的分离纯化、结构表征、活性评价与生物合成调控[D]. 保定: 河北大学, 2021. |
Jiang JP. Isolation, purification, structure characterization, activity evaluation and biosynthesis regulation of anti-tumor lipopeptides from bacillus[D]. Baoding: Hebei University, 2021. | |
[31] |
臧威, 何旭, 孙剑秋, 等. 桦木内生真菌的分离与代谢产物的抑菌活性[J]. 生态环境学报, 2012, 21(4): 661-665.
doi: 10.16258/j.cnki.1674-5906(2012)04-0661-05 |
Zang W, He X, Sun JQ, et al. Antimicrobial activity of metabolites and isolation of endophytic fungi in Betula spp[J]. Ecol Environ Sci, 2012, 21(4): 661-665. | |
[32] | 马欢欢, 林洋, 吕欣然, 等. 96孔板法筛选抗黑曲霉性乳酸菌及抑菌机理研究[J]. 食品工业科技, 2017, 38(12): 171-175. |
Ma HH, Lin Y, Lv XR, et al. Screening and inhibition mechanism of lactic acid bacteria against Aspergillus niger using 96-well microtiter plates[J]. Sci Technol Food Ind, 2017, 38(12): 171-175. | |
[33] | Zhao YJ, Selvaraj JN, Xing FG, et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum[J]. PLoS One, 2014, 9(3): e92486. |
[34] |
Stein T. Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lantibiotic-producing bacteria[J]. Rapid Commun Mass Spectrom, 2008, 22(8): 1146-1152.
doi: 10.1002/rcm.v22:8 URL |
[35] | 袁玉娟. Bacillus subtilis SQR9的黄瓜促生和枯萎病生防效果及其作用机制研究[D]. 南京: 南京农业大学, 2011. |
Yuan YJ. Cucumber growth promotion and wilt disease suppression of Bacillus subtilis SQR9 and their mechanisms[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[36] | 刘丽萍, 高洁, 李玉. 植物炭疽菌属Colletotrichum真菌研究进展[J]. 菌物研究, 2020, 18(4): 266-281. |
Liu LP, Gao J, Li Y. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. J Fungal Res, 2020, 18(4): 266-281. | |
[37] |
冯江鹏, 邱莉萍, 梁秀燕, 等. 草莓胶孢炭疽菌拮抗细菌贝莱斯芽孢杆菌JK3的鉴定及其抗菌活性[J]. 浙江农业学报, 2020, 32(5): 831-839.
doi: 10.3969/j.issn.1004-1524.2020.05.11 |
Feng JP, Qiu LP, Liang XY, et al. Identification of antagonistic bacteria Bacillus velezensis JK3 against anthracnose of straw-berry and its antipathogenic activity[J]. Acta Agric Zhejiangensis, 2020, 32(5): 831-839. | |
[38] | 裴张新, 王志华, 于静亚, 等. 园林植物炭疽病研究进展[J]. 中国森林病虫, 2023, 42(6): 33-38. |
Pei ZX, Wang ZH, Yu JY, et al. Research progress of garden plant anthracnose[J]. For Pest Dis, 2023, 42(6): 33-38. | |
[39] | Yang LN, He MH, Ouyang HB, et al. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action[J]. BMC Microbiol, 2019, 19(1): 205. |
[40] | Tudi M, Ruan HD, Wang L, et al. Agriculture development, pesticide application and its impact on the environment[J]. Int J Environ Res Public Health, 2021, 18(3): 1112. |
[41] | 廖思晨, 田露, 王旭阳, 等. 产抗菌脂肽解淀粉芽孢杆菌wxy-b3的抑菌活性及其分离鉴定[J]. 陕西科技大学学报, 2022, 40(6): 55-61. |
Liao SC, Tian L, Wang XY, et al. Bacteriostatic activity, isolation and identification of Bacillus amyloliquefaciens wxy-b3 producing antimicrobial lipopeptide[J]. J Shaanxi Univ Sci Technol, 2022, 40(6): 55-61. | |
[42] | 李洋. 2021年国内新登记的生物农药品种[J]. 世界农药, 2022, 44(2): 1-8. |
Li Y. New biopesticides registered in China in 2021[J]. World Pestic, 2022, 44(2): 1-8. | |
[43] | 袁海峰, 周舒扬, 甄涛, 等. 新型芽孢杆菌在农业领域应用研究进展[J]. 国土与自然资源研究, 2020(2): 92-94. |
Yuan HF, Zhou SY, Zhen T, et al. Research progress on application of new Bacillus in agriculture[J]. Territ Nat Resour Study, 2020(2): 92-94. | |
[44] |
刘超, 刘洪伟, 汪步青, 等. 解淀粉芽孢杆菌BA-26抗菌物质分离及对灰葡萄孢抑菌作用研究[J]. 生物技术通报, 2019, 35(7): 83-89.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0055 |
Liu C, Liu HW, Wang BQ, et al. Isolation of antifungal substances from Bacillus amyloliquefaciens BA-26 and its antifungal activity against Botrytis cinerea[J]. Biotechnol Bull, 2019, 35(7): 83-89. | |
[45] |
杜佳慧, 徐伟芳, 杨晓冬, 等. 多花黄精产吲哚乙酸内生菌的分离筛选及其对黄精种子萌发的影响[J]. 生物技术通报, 2022, 38(12): 223-232.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0078 |
Du JH, Xu WF, Yang XD, et al. Isolation and screening of endophytes producing indole acetic acid from Polygonatum cyrtonema Hua. and its effect on seed germination of Polygonatum[J]. Biotechnol Bull, 2022, 38(12): 223-232. | |
[46] | 林占军, 汤江武, 陈小龙, 等. 微生物菌剂的茶园抑草效果及对茶叶品质的影响[J]. 浙江农业科学, 2023, 64(10): 2474-2477. |
Lin ZJ, Tang JW, Chen XL, et al. Effect of microbial agents on weed control in tea garden and its influence on tea quality[J]. J Zhejiang Agric Sci, 2023, 64(10): 2474-2477. | |
[47] | 郭世堂, 李齐. 乙醇生产副产物在枯草芽孢杆菌培养中的应用[J]. 当代化工, 2022, 51(6): 1402-1405, 1410. |
Guo ST, Li Q. Application of by-products of ethanol production in Bacillus subtilis culture[J]. Contemp Chem Ind, 2022, 51(6): 1402-1405, 1410. | |
[48] | 汝甲荣, 明立伟, 李志新, 等. 芽孢杆菌防治马铃薯主要病害的研究现状与展望[J]. 中国种业, 2023(9): 22-25, 29. |
Ru JR, Ming LW, Li ZX, et al. Research status and prospects of Bacillus subtilis for controlling major potato diseases[J]. China Seed Ind, 2023(9): 22-25, 29. | |
[49] | 苏正川, 熊仁科, 罗小艳. 解淀粉芽孢杆菌的作用及其产品开发[J]. 农药科学与管理, 2019, 40(6): 21-30. |
Su ZC, Xiong RK, Luo XY. Function and product development of Bacillus amyloliquefaciens[J]. Pestic Sci Adm, 2019, 40(6): 21-30. | |
[50] |
Yuan HB, Shi BK, Wang L, et al. Isolation and characterization of Bacillus velezensis strain P2-1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea[J]. Front Microbiol, 2022, 12: 808938.
doi: 10.3389/fmicb.2021.808938 URL |
[51] | Ahmed W, Zhou GS, Yang J, et al. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco[J]. Egyptian Journal of Biological Pest Control, 32(1): 25. |
[52] | 喇文军, 贾书娟, 吴小丽, 等. 抑制辣椒炭疽菌的生防芽孢杆菌菌株筛选和鉴定[J]. 深圳职业技术学院学报, 2016, 15(3): 48-52. |
La WJ, Jia SJ, Wu XL, et al. Screening and identification of an antagonistic Bacillus sp. against Colletotrichum capsici[J]. J Shenzhen Polytech, 2016, 15(3): 48-52. | |
[53] |
Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions[J]. Mol Microbiol, 2005, 56(4): 845-857.
doi: 10.1111/mmi.2005.56.issue-4 URL |
[54] | 李苏冉, 李雪, 冯佳霖, 等. 生防菌解淀粉芽孢杆菌SQ-2全基因组测序及生物信息学分析[J]. 微生物学通报, 2023, 50(3): 1073-1097. |
Li SR, Li X, Feng JL, et al. Whole genome sequencing and genomics analysis of Bacillus amyloliquefaciens SQ-2 with biocontrol activity[J]. Microbiol China, 2023, 50(3): 1073-1097. | |
[55] |
何亚芳, 包慧芳, 王宁, 等. 甜瓜镰刀菌果腐病菌拮抗菌筛选及其拮抗性研究[J]. 园艺学报, 2023, 50(10): 2257-2270.
doi: 10.16420/j.issn.0513-353x.2022-0741 |
He YF, Bao HF, Wang N, et al. Screening of antagonistic bacteria against Fusarium spp. causing melon fruit rot and the antagonistic properties[J]. Acta Hortic Sin, 2023, 50(10): 2257-2270. | |
[56] | 欧婷, 金必堃, 高海英, 等. Bacillus velezensis SWUJ1拮抗物质分离纯化及抑菌机理研究[J]. 西南大学学报: 自然科学版, 2022, 44(1): 75-87. |
Ou T, Jin BK, Gao HY, et al. Purification and research of inhibitory mechanism of antagonist substances from Bacillus velezensis SWUJ1 strain[J]. J Southwest Univ Nat Sci Ed, 2022, 44(1): 75-87. | |
[57] | 李铮, 王金辉, 丁丽丽, 等. 贝莱斯芽孢杆菌菌株NZ-4生防潜能及基因组学分析[J]. 江苏农业科学, 2023, 51(2): 117-125. |
Li Z, Wang JH, Ding LL, et al. Biocontrol potential and genomic analysis of Bacillus Vé lez strain NZ-4[J]. Jiangsu Agric Sci, 2023, 51(2): 117-125. |
[1] | 王欣, 徐一亿, 徐扬, 徐辰武. 作物全基因组选择育种技术研究进展[J]. 生物技术通报, 2024, 40(3): 1-13. |
[2] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[3] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[4] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[5] | 路喻丹, 刘晓驰, 冯新, 陈桂信, 陈义挺. 猕猴桃BBX基因家族成员鉴定与转录特征分析[J]. 生物技术通报, 2024, 40(2): 172-182. |
[6] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[7] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[8] | 周会汶, 吴兰花, 韩德鹏, 郑伟, 余跑兰, 吴杨, 肖小军. 甘蓝型油菜种子硫苷含量全基因组关联分析[J]. 生物技术通报, 2024, 40(1): 222-230. |
[9] | 冯路遥, 赵江源, 施竹凤, 莫艳芳, 杨童雨, 申云鑫, 何飞飞, 李铭刚, 杨佩文. 森林根际土壤细菌的分离、鉴定及生物活性筛选[J]. 生物技术通报, 2024, 40(1): 294-307. |
[10] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[11] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[12] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[13] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[14] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[15] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||