生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 172-179.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0077
杨代毅1,2(), 樊杨3, 屠焰2, 徐志宇4, 薛颖昊4, 孙元丰4, 王进5, 郝小燕1(
), 马涛2(
)
收稿日期:
2024-01-19
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
郝小燕,女,博士,副教授,研究方向:反刍动物营养与饲料科学;E-mail: haoxiaoyan1990@sina.com;作者简介:
杨代毅,男,硕士,研究方向:反刍动物营养;E-mail: sxauydy@163.com樊杨同为本文第一作者
基金资助:
YANG Dai-yi1,2(), FAN Yang3, TU Yan2, XU Zhi-yu4, XUE Ying-hao4, SUN Yuan-feng4, WANG Jin5, HAO Xiao-yan1(
), MA Tao2(
)
Received:
2024-01-19
Published:
2024-06-26
Online:
2024-06-24
摘要:
【目的】 采用物理(膨化)和微生物(黑曲霉、枯草芽孢杆菌)处理油菜秸秆,并分析发酵后的营养物质含量、纤维结构和硫代葡萄糖苷含量,旨在提高油菜秸秆作为粗饲料在反刍动物上的饲用价值。【方法】 试验设计6个组,分别为:油菜秸秆(M组,即对照组)、对照加黑曲霉(MA组)、对照加枯草芽孢杆菌(MB组)、对照膨化(PM组)、对照膨化加黑曲霉(PMA组)、对照膨化加枯草芽孢杆菌(PMB组)。【结果】 与M组(2.60%)相比,其他各组的粗蛋白质含量显著增加(P<0.05),分别为3.16%(MA组)、3.24%(MB组)、3.31%(PM组)、4.02%(PMA组)、3.73%(PMB组);与M组(83.4%)相比,其他各组的中性洗涤纤维(NDF)含量显著降低(P<0.05),分别为81.6%(MA组)、80.3%(MB组)、80.4%(PM组)、77.3%(PMA组)、78.3%(PMB组)。MA组的结晶度(27.0% vs 25.3%)和比表面积(1.22 m2/g vs 1.19 m2/g)显著高于M组(P<0.05),氢键作用力减弱,聚合度与其他各组无显著差异(P>0.05);与M组(0.49 μmol/g)相比,其他各组硫代葡萄糖苷含量显著降低(P<0.05),PMA组(0.24 μmol/g)和PMB组(0.22 μmol/g)样品的硫代葡萄糖苷含量差异不显著,但显著低于其他各组(P<0.05)。【结论】 通过物理和微生物处理油菜秸秆能通过破坏纤维结构降低NDF水平,并减少抗营养因子硫代葡萄糖苷含量,从而改善其在反刍动物上的饲用价值。
杨代毅, 樊杨, 屠焰, 徐志宇, 薛颖昊, 孙元丰, 王进, 郝小燕, 马涛. 不同处理对油菜秸秆养分、纤维结构和硫苷含量的影响[J]. 生物技术通报, 2024, 40(6): 172-179.
YANG Dai-yi, FAN Yang, TU Yan, XU Zhi-yu, XUE Ying-hao, SUN Yuan-feng, WANG Jin, HAO Xiao-yan, MA Tao. Effects of Different Treatments on the Nutrients, Fiber Structure, and Glucosinolate Contents in Rapeseed Straw[J]. Biotechnology Bulletin, 2024, 40(6): 172-179.
项目 Item | 组别 Groups | SEM | P | |||||
---|---|---|---|---|---|---|---|---|
对照组 M | 对照加黑曲霉组MA | 对照加枯草芽孢杆菌组MB | 对照膨化组PM | 对照膨化加黑曲霉组PMA | 对照膨化加枯草芽孢杆菌组PMB | |||
干物质DM | 70.5a | 67.8b | 67.3b | 70.3a | 67.2b | 64.2b | 0.40 | <0.01 |
粗蛋白质CP | 2.60d | 3.16c | 3.24bc | 3.31bc | 4.02a | 3.73ab | 0.12 | <0.01 |
中性洗涤纤维NDF | 83.4a | 81.6b | 80.3b | 80.4b | 77.3c | 78.3c | 0.52 | <0.01 |
酸性洗涤纤维ADF | 66.8a | 65.2ab | 64.1bc | 63.2c | 60.1d | 61.1d | 0.40 | <0.01 |
表1 不同处理对油菜秸秆营养物质含量的影响(干物质基础)
Table 1 Effects of different treatments on the nutrient contents of rapeseed straw(Dry matter basis) %
项目 Item | 组别 Groups | SEM | P | |||||
---|---|---|---|---|---|---|---|---|
对照组 M | 对照加黑曲霉组MA | 对照加枯草芽孢杆菌组MB | 对照膨化组PM | 对照膨化加黑曲霉组PMA | 对照膨化加枯草芽孢杆菌组PMB | |||
干物质DM | 70.5a | 67.8b | 67.3b | 70.3a | 67.2b | 64.2b | 0.40 | <0.01 |
粗蛋白质CP | 2.60d | 3.16c | 3.24bc | 3.31bc | 4.02a | 3.73ab | 0.12 | <0.01 |
中性洗涤纤维NDF | 83.4a | 81.6b | 80.3b | 80.4b | 77.3c | 78.3c | 0.52 | <0.01 |
酸性洗涤纤维ADF | 66.8a | 65.2ab | 64.1bc | 63.2c | 60.1d | 61.1d | 0.40 | <0.01 |
项目 Item | 组别 Group | SEM | P | |||||
---|---|---|---|---|---|---|---|---|
对照组 M | 对照加黑曲霉组MA | 对照加枯草芽孢杆菌组MB | 对照膨化组PM | 对照膨化加黑曲霉组PMA | 对照膨化加枯草芽孢杆菌组PMB | |||
聚合度Degree of polymerization | 467.6a | 435.1ab | 414.3b | 458.7a | 397.7bc | 366.9c | 8.04 | <0.01 |
结晶度 Crystallinity | 25.3d | 27.0b | 26.5c | 26.3c | 28.6a | 27.8b | 0.27 | <0.01 |
比表面积 Specific surface area | 1.19d | 1.22c | 1.47b | 1.46b | 1.46b | 1.72a | 0.04 | <0.01 |
表2 不同处理对油菜秸秆聚合度、结晶度、比表面积的影响
Table 2 Effects of different treatments on the degree of polymerization, crystallinity, and specific surface area of rapeseed straw
项目 Item | 组别 Group | SEM | P | |||||
---|---|---|---|---|---|---|---|---|
对照组 M | 对照加黑曲霉组MA | 对照加枯草芽孢杆菌组MB | 对照膨化组PM | 对照膨化加黑曲霉组PMA | 对照膨化加枯草芽孢杆菌组PMB | |||
聚合度Degree of polymerization | 467.6a | 435.1ab | 414.3b | 458.7a | 397.7bc | 366.9c | 8.04 | <0.01 |
结晶度 Crystallinity | 25.3d | 27.0b | 26.5c | 26.3c | 28.6a | 27.8b | 0.27 | <0.01 |
比表面积 Specific surface area | 1.19d | 1.22c | 1.47b | 1.46b | 1.46b | 1.72a | 0.04 | <0.01 |
[1] | 饶越悦, 周顺利, 黄毅, 等. 秸秆富集深层还田对农田土壤质量影响的研究进展[J]. 中国生态农业学报: 中英文, 2023, 31(10): 1579-1587. |
Rao YY, Zhou SL, Huang Y, et al. Advances in research involving deep incorporation of enriched straw on soil quality[J]. Chin J Eco Agric, 2023, 31(10): 1579-1587. | |
[2] | Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels[J]. Plant J, 2008, 54(4): 559-568. |
[3] | Ding SY, Liu YS, Zeng YN, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J]. Science, 2012, 338(6110): 1055-1060. |
[4] | Zeng JJ, Singh D, Chen SL. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts[J]. Bioresour Technol, 2011, 102(3): 3206-3214. |
[5] | Castoldi R, Bracht A, de Morais GR, et al. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics[J]. Chem Eng J, 2014, 258: 240-246. |
[6] | 王玉荣, 陶莲, 马涛, 等. 不同酶及组合处理对青贮水稻秸秆微观结构的影响[J]. 动物营养学报, 2017, 29(4): 1401-1408. |
Wang YR, Tao L, Ma T, et al. Effect of different enzymes and their combinations on microstructure of rice straw silage[J]. Chin J Anim Nutr, 2017, 29(4): 1401-1408. | |
[7] |
崔美, 黄仁亮, 苏荣欣, 等. 木质纤维素新型预处理与顽抗特性[J]. 化工学报, 2012, 63(3): 677-687.
doi: 10.3969/j.issn.0438-1157.2012.03.002 |
Cui M, Huang RL, Su RX, et al. An overview on lignocellulose pretreatment and recalcitrant characteristics[J]. CIESC J, 2012, 63(3): 677-687.
doi: 10.3969/j.issn.0438-1157.2012.03.002 |
|
[8] | 张丽英. 饲料分析及饲料质量检测技术[M]. 2版. 北京: 中国农业大学出版社, 2003. |
Zhang LY. Feed analysis and feed quality detecting technology[M]. 2nd ed. Beijing: China Agricultural University Press, 2003. | |
[9] |
An QD, Zhang GL, Wu HT, et al. Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens[J]. J Appl Microbiol, 2009, 106(1): 161-170.
doi: 10.1111/j.1365-2672.2008.03988.x pmid: 19054241 |
[10] | Meyer L, Jacquet N, Vanderghem C, et al. Effect of steam explosion pre-treatment on enzymatic saccharification of lignocellulosic material[C]. Cost FP0602 Final Meeting/Italic 6, 2011. |
[11] | 郭翰林. 纤维素超分子结构及其降解过程的表征分析[D]. 济南: 山东大学, 2012. |
Guo HL. Characterization of degradation process of cellulose superstructure[D]. Jinan: Shandong University, 2012. | |
[12] | 王玉荣. 不同微生态制剂对稻秸分子结构及瘤胃降解特性的影响[D]. 阿拉尔: 塔里木大学, 2017. |
Wang YR. Effects of different microbial ecological preparations on microstructure and rumen degradability of rice straw[D]. Ala'er: Tarim University, 2017. | |
[13] | Yin L, Chen HC, Cao BH, et al. Molecular characterization of MYB28 involved in aliphatic glucosinolate biosynthesis in Chinese kale(Brassica oleracea var. alboglabra bailey)[J]. Front Plant Sci, 2017, 8: 1083. |
[14] | 刘高坤, 王思伟, 刘少兴, 等. 不同微生物添加剂组合对全株玉米青贮品质的影响[J]. 中国畜牧杂志, 2021, 57(8): 215-218, 223. |
Liu GK, Wang SW, Liu SX, et al. Effect of different microbial additives on the quality of whole plant maize silage[J]. Chin J Anim Sci, 2021, 57(8): 215-218, 223. | |
[15] | 欧荣娣, 范觉鑫, 王升平, 等. 红薯渣固态发酵条件优化[J]. 动物营养学报, 2015, 27(10): 3302-3310. |
Ou RD, Fan JX, Wang SP, et al. Optimum conditions of sweet potato residue by solid-state fermentation[J]. Chin J Anim Nutr, 2015, 27(10): 3302-3310. | |
[16] |
崔艺燕, 王超普, 邓盾, 等. 不同菌种有氧发酵对柑橘渣营养价值的影响[J]. 动物营养学报, 2022, 34(3): 2030-2040.
doi: 10.3969/j.issn.1006-267x.2022.03.061 |
Cui YY, Wang CP, Deng D, et al. Effects of aerobic fermentation with different strains on nutritional value of Citrus pomace[J]. Chin J Anim Nutr, 2022, 34(3): 2030-2040. | |
[17] | 刘纪成, 刘佳, 张敏, 等. 不同真菌发酵对花生秸秆营养含量及酶活性的影响[J]. 中国饲料, 2018(15): 73-77. |
Liu JC, Liu J, Zhang M, et al. Effects of different fungi fermentations on nutrient contents and enzyme activities of peanut straw[J]. China Feed, 2018(15): 73-77. | |
[18] |
才金玲, 王乃可, 王娟, 等. 水稻秸秆预处理技术研究进展[J]. 中国稻米, 2023, 29(3): 24-27.
doi: 10.3969/j.issn.1006-8082.2023.03.004 |
Cai JL, Wang NK, Wang J, et al. Research process on pretreatment technology of rice straw[J]. China Rice, 2023, 29(3): 24-27.
doi: 10.3969/j.issn.1006-8082.2023.03.004 |
|
[19] |
龚剑明, 赵向辉, 周珊, 等. 不同真菌发酵对油菜秸秆养分含量、酶活性及体外发酵有机物降解率的影响[J]. 动物营养学报, 2015, 27(7): 2309-2316.
doi: 10.3969/j.issn.1006-267x.2015.07.039 |
Gong JM, Zhao XH, Zhou S, et al. Effects of different fungi fermentations on nutrient contents, enzyme activities and in vitro fermentation organic matter degradation rate of rape straw[J]. Chin J Anim Nutr, 2015, 27(7): 2309-2316. | |
[20] | 李立波, 任晓冬, 窦森. 固态发酵中2种微生物降解玉米秸秆效果的对比研究[J]. 农业环境科学学报, 2017, 36(10): 2136-2142. |
Li LB, Ren XD, Dou S. Comparative study of the degradation efficiency of 2 types of microorganisms on the degradation of corn stalks in solid-state fermentation[J]. J Agro Environ Sci, 2017, 36(10): 2136-2142. | |
[21] |
Abo-Donia FM, Abdel-Azim SN, Elghandour MMY, et al. Feed intake, nutrient digestibility and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea[J]. Trop Anim Health Prod, 2014, 46(1): 221-228.
doi: 10.1007/s11250-013-0479-z pmid: 24085418 |
[22] | 郭照宙, 许灵敏, 宋建楼, 等. 产朊假丝酵母功能的探究及应用[J]. 饲料博览, 2016(3): 33-35, 39. |
Guo ZZ, Xu LM, Song JL, et al. Functional exploration and application of Candida Utilis[J]. Feed Rev, 2016(3): 33-35, 39. | |
[23] | 陈松, 丁立孝, 张莉, 等. 发酵苹果渣生产蛋白饲料的混合菌种的筛选[J]. 食品与发酵工业, 2008, 34(2): 94-96. |
Chen S, Ding LX, Zhang L, et al. Screening of the multi-strains to produce single cell protein feeds from apple pomace[J]. Food Ferment Ind, 2008, 34(2): 94-96. | |
[24] | Shi CY, He J, Yu J, et al. Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal[J]. PLoS One, 2016, 11(4): e0153230. |
[25] | Zhang MF, Qin YH, Ma JY, et al. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent[J]. Ultrason Sonochem, 2016, 31: 404-408. |
[26] | 黄珍. 产纤维素酶重组乳酸乳球菌的构建、对秸秆微贮品质的影响及机理[D]. 南昌: 江西农业大学, 2022. |
Huang Z. Construction of cellulase-producing recombinant Lactococcus lactis and its effect and mechanism on straw silage quality[D]. Nanchang: Jiangxi Agricultural University, 2022. | |
[27] | 裴继诚. 植物纤维化学[M]. 4版. 北京: 中国轻工业出版社, 2012. |
Pei JC. Lignocellulosic chemistry[M]. 4th ed. Beijing: China Light Industry Press, 2012. | |
[28] | 王玉荣, 陶莲, 许贵善, 等. 秸秆木质纤维素微观结构及其裂解方法[J]. 中国饲料, 2016(12): 38-41. |
Wang YR, Tao L, Xu GS, et al. The mierostructure of straw lignocellulose and its decomposition method[J]. China Feed, 2016(12): 38-41. | |
[29] | Esteves B, Velez MA, Domingos I, et al. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR[J]. Maderas Cienciay, 2013, 15(2): 245-258. |
[30] |
陈亮, 武小芬, 齐慧, 等. γ射线、电子束辐照处理对芦苇木质纤维素结构及酶解性能的影响[J]. 核农学报, 2023, 37(5): 971-980.
doi: 10.11869/j.issn.1000-8551.2023.05.0971 |
Chen L, Wu XF, Qi H, et al. Effects of γ-ray and electron beam irradiation pretreatment on structure and enzymatic efficiency of lighocellulose in Phragmites australis[J]. J Nucl Agric Sci, 2023, 37(5): 971-980. | |
[31] | Dai YZ, Si MY, Chen YH, et al. Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw[J]. Bioresour Technol, 2015, 198: 725-731. |
[32] | Yang L, Ru Y, Xu S, et al. Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment[J]. Bioresour Technol, 2021, 325: 124688. |
[33] | 薛润林, 斯薛辉. 废木材生产有机肥的研究[J]. 新农业, 2017(11): 63-64. |
Xue RL, Si XH. Research on the production of organic fertilizer from waste wood[J]. New Agriculture, 2017(11): 63-64. | |
[34] | Mertoglu Elmas G, Yilgor N. Chemical and thermal characterizations of Pinus sylvestris and Pinus pinaster[J]. BioResources, 2020, 15(2): 3604-3620. |
[35] | Wang FQ, Xie H, Chen W, et al. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis[J]. Bioresour Technol, 2013, 144: 572-578. |
[36] |
Agerbirk N, Olsen CE. Glucosinolate structures in evolution[J]. Phytochemistry, 2012, 77: 16-45.
doi: 10.1016/j.phytochem.2012.02.005 pmid: 22405332 |
[37] | Tripathi MK, Mishra AS. Glucosinolates in animal nutrition: a review[J]. Anim Feed Sci Technol, 2007, 132(1-2): 1-27. |
[38] | Tsao GT, Xia LM, Cao NJ, et al. Solid-state fermentation with Aspergillus niger for cellobiase production[M]// Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Totowa, NJ: Humana Press, 2000: 743-749. |
[39] | Zhu XF, Wang LY, Zhang Z, et al. Combination of fiber-degrading enzymatic hydrolysis and lactobacilli fermentation enhances utilization of fiber and protein in rapeseed meal as revealed in simulated pig digestion and fermentation in vitro[J]. Anim Feed Sci Technol, 2021, 278: 115001. |
[40] | Mahajan A, Dua S. Role of enzymatic treatments in modifying the functional properties of rapeseed(Brassica campestris var. toria)meal[J]. Int J Food Sci Nutr, 1998, 49(6): 435-440. |
[41] | Shi CY, He J, Yu J, et al. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value[J]. J Anim Sci Biotechnol, 2015, 6(1): 13. |
[1] | 王璐, 刘梦雨, 张富源, 纪守坤, 王云, 张英杰, 段春辉, 刘月琴, 严慧. 瘤胃源粪臭素降解菌的分离鉴定及其降解特性研究[J]. 生物技术通报, 2024, 40(3): 305-311. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[4] | 高凯月, 郭雨婷, 杜奕谋, 郑小梅, 马欣荣, 赵伟, 郑平, 孙际宾. 黑曲霉葡萄糖吸收定量检测的方法建立及其在MstC功能研究中的应用[J]. 生物技术通报, 2023, 39(12): 71-80. |
[5] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[6] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[7] | 马艳琴, 邱益彬, 李莎, 徐虹. 透明质酸的生物合成及其代谢工程的研究进展[J]. 生物技术通报, 2022, 38(2): 252-262. |
[8] | 张倩, 徐春燕, 张铎, 王亚会, 梁新盈, 李慧. 黄褐土玉米秸秆腐解菌株筛选及其促腐能力研究[J]. 生物技术通报, 2022, 38(12): 233-243. |
[9] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[10] | 苗华彪, 曹艳, 杨梦瀚, 黄遵锡. 基于信号肽策略提高外源蛋白在枯草芽孢杆菌中的表达[J]. 生物技术通报, 2021, 37(6): 259-271. |
[11] | 李红叶, 陈立佼, 刘明丽, 郭天杰, 王道平, 潘映红, 赵明. 黑曲霉单宁酶基因Tan2克隆与表达[J]. 生物技术通报, 2021, 37(3): 44-52. |
[12] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[13] | 唐璎, 黄佳, 邓展瑞, 杨晓楠. 一株枯草芽孢杆菌降解黄曲霉毒素B1产物分析[J]. 生物技术通报, 2021, 37(12): 82-90. |
[14] | 张维娇, 金学荣, 徐雅晴, 李江华, 堵国成, 康振. 枯草芽孢杆菌表达与调控工具相关研究进展[J]. 生物技术通报, 2020, 36(4): 26-33. |
[15] | 付首颖, 夏苗苗, 张祎凝, 刘川, 涂然, 张大伟. 核黄素工业菌株高通量筛选方法的建立和应用[J]. 生物技术通报, 2020, 36(4): 47-53. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||