生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 299-308.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0422
马文澳1(), 杨微2, 李迎春1, 朱彦彬1, 陈志宝1(
), 刘娜3(
)
收稿日期:
2024-05-08
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
陈志宝,男,博士,教授,研究方向:分子药理学;E-mail: chenzb@gdou.edu.cn;作者简介:
马文澳,女,硕士研究生,研究方向:分子药理学;E-mail: 13281001183@163.com
基金资助:
MA Wen-ao1(), YANG Wei2, LI Ying-chun1, ZHU Yan-bin1, CHEN Zhi-bao1(
), LIU Na3(
)
Received:
2024-05-08
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】探究桦褐孔菌乙醇提取物(ethanol extract of Inonotus obliquus, EEIO)对脂多糖(lipopolysaccharides, LPS)诱导肠损伤的保护作用及分子机制。【方法】利用LPS诱导的小鼠小肠上皮细胞和C57BL/6小鼠,检测EEIO处理后LDH和NO水平;RT-qPCR和ELISA方法检测EEIO对炎症因子IL-1β和IL-18表达的影响;RT-qPCR和WB方法检测EEIO对MAPK和焦亡信号通路的影响。【结果】体内外结果一致表明,EEIO可有效缓解LPS导致的LDH和NO水平升高;EEIO处理后,IL-1β和IL-18表达明显降低。EEIO抑制MAPK(ERK、P38、JNK)信号通路,显著降低p-ERK/ERK、p-p38/p38和p-JNK/JNK的水平。同时,焦亡途径被抑制,ASC、Caspase-1、GSDMD和NLRP3水平显著降低。阳性药物白藜芦醇(resveratrol, RES)对各项检测指标的影响与EEIO相似,但效果不如EEIO。【结论】EEIO通过调控MAPK信号通路,抑制焦亡途径进而降低炎性因子的表达,缓解LPS诱导肠损伤。
马文澳, 杨微, 李迎春, 朱彦彬, 陈志宝, 刘娜. 桦褐孔菌乙醇提取物对脂多糖诱导肠损伤的缓解作用及机制[J]. 生物技术通报, 2024, 40(12): 299-308.
MA Wen-ao, YANG Wei, LI Ying-chun, ZHU Yan-bin, CHEN Zhi-bao, LIU Na. Alleviating Roles and Mechanisms of Ethanol Extract from Inonotus obliquus to Intestinal Injury Induced by Lipopolysaccharide[J]. Biotechnology Bulletin, 2024, 40(12): 299-308.
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
IL-1β | F:CACTACAGGCTCCGAGATGAACAAC R:TGTCGTTGCTTGGTTCTCCTTGTAC |
IL-18 | F:ACAGGCCTGACATCTTCTGC R:ATTGTTCCTGGGCCAAGAGG |
Caspase-1 | F:TGCCCAGAGCACAAGACTTC |
R:TCCTTGTTTCTCTCCACGGC | |
GSDMD | F:ATGGCATGGCTTACACCACC |
R:ATGGCATGGCTTACACCACC | |
NLRP3 | F:GCCGTCTACGTCTTCTTCCTTTCC |
R:CATCCGCAGCCAGTGAACAGAG | |
β-actin | F:TATGCTCTCCCTCACGCCATCC |
R:GTCACGCACGATTTCCCTCTCAG |
表1 基因名称和引物序列
Table 1 Gene names and primer sequences
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
IL-1β | F:CACTACAGGCTCCGAGATGAACAAC R:TGTCGTTGCTTGGTTCTCCTTGTAC |
IL-18 | F:ACAGGCCTGACATCTTCTGC R:ATTGTTCCTGGGCCAAGAGG |
Caspase-1 | F:TGCCCAGAGCACAAGACTTC |
R:TCCTTGTTTCTCTCCACGGC | |
GSDMD | F:ATGGCATGGCTTACACCACC |
R:ATGGCATGGCTTACACCACC | |
NLRP3 | F:GCCGTCTACGTCTTCTTCCTTTCC |
R:CATCCGCAGCCAGTGAACAGAG | |
β-actin | F:TATGCTCTCCCTCACGCCATCC |
R:GTCACGCACGATTTCCCTCTCAG |
图1 EEIO调节LPS诱导MODE-K细胞损伤时细胞存活率和LDH活性的表达 与CON相比,*P<0.05、**P<0.01;与LPS相比,#P<0.05、##P<0.01,下同
Fig. 1 EEIO regulates the expressions of cell viability and LDH activity in LPS-induced MODE-K cell injury Compared with CON, * P< 0.05, ** P< 0.01. Compared with LPS, #P< 0.05, ##P< 0.01, the same below
[1] |
Viladomiu M, Metz ML, Lima SF, et al. Adherent-invasive E. coli metabolism of propanediol in Crohn's disease regulates phagocytes to drive intestinal inflammation[J]. Cell Host Microbe, 2021, 29(4): 607-619.e8.
doi: 10.1016/j.chom.2021.01.002 pmid: 33539767 |
[2] |
Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS[J]. Nat Immunol, 2019, 20: 527-533.
doi: 10.1038/s41590-019-0368-3 pmid: 30962589 |
[3] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4): 1233-1261.
doi: 10.1007/s00018-020-03656-y pmid: 33057840 |
[4] | Cui Y, Qu YY, Yin K, et al. Selenomethionine ameliorates LPS-induced intestinal immune dysfunction in chicken jejunum[J]. Metallomics, 2021, 13(3): mfab003. |
[5] | Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure[J]. Arch Surg, 1990, 125(3): 403-404. |
[6] | 常轶聪. 二氢杨梅素通过调节ROS/NLRP3炎症小体干预LPS诱导鸡肠损伤的机制研究[D]. 哈尔滨: 东北农业大学, 2021. |
Chang YC. Mechanism of dihydromyricetin intervening LPS-induced intestinal injury in chickens by regulating ROS/NLRP3 inflammatory corpuscles[D]. Harbin:Northeast Agricultural University, 2021. | |
[7] | 马伟平, 侯睿. 桦褐孔菌抗肿瘤作用的研究进展[J]. 医学研究生学报, 2017, 30(4): 440-443. |
Ma WP, Hou R. Research progress of inonotus obliquus in anti tumor[J]. J Med Postgrad, 2017, 30(4): 440-443. | |
[8] | 王蔚, 周忠光, 刘旭, 等. 桦褐孔菌醇提物对几种消化系统恶性肿瘤的影响[J]. 中医药信息, 2018, 35(1): 12-15. |
WangW/Y, Zhou ZG, Liu X, et al. Effects of alcohol extracts of Inonotus obliquus on several malignant tumors of digestive system[J]. Inf Tradit Chin Med, 2018, 35(1): 12-15. | |
[9] | 曾海. 桦褐孔菌对2型糖尿病患者硝化酪氨酸和血红素加氧酶-1水平的影响[D]. 延吉: 延边大学, 2014. |
Zeng H. Effect of Inonotus obliquus on the levels of nitrotyrosine and heme oxygenase-1 in patients with type 2 diabetes mellitus[D]. Yanji: Yanbian University, 2014. | |
[10] | 延光海, 金光玉, 李良昌, 等. 桦褐孔菌乙醇提取物在小鼠哮喘模型中对p38MAPK信号通路的影响[J]. 中国中药杂志, 2011, 36(8): 1067-1070. |
Yan GH, Jin GY, Li LC, et al. Protective effects and mechanism of Inonotus obliquus on asthmatic mice[J]. China J Chin Mater Med, 2011, 36(8): 1067-1070. | |
[11] | 李建华. 桦褐孔菌的药理作用研究进展[J]. 科学技术创新, 2019,(36):45-46. |
Li JH. Research progress on the pharmacological effects of Betula brownii fungus[J]. Science and Technology Innovation, 2019(36): 45-46. | |
[12] | 陈盛宇, 田缘, 马俊秀, 等. 桦褐孔菌多糖研究现状与展望[J]. 食品研究与开发, 2022, 43(22): 215-224. |
Chen SY, Tian Y, Ma JX, et al. Research status and prospects of polysaccharides from Inonotus obliquus[J]. Food Res Dev, 2022, 43(22): 215-224. | |
[13] | Zhao YX, Zheng WF. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus[J]. J Ethnopharmacol, 2021, 265: 113321. |
[14] | 李毅, 李建宽, 杨红, 等. 桦褐孔菌提取物对阿托伐他汀致小鼠肝损伤的保护作用[J]. 中国兽医杂志, 2024, 60(2): 18-26. |
Li Y, Li JK, Yang H, et al. Protective effect of Fusarium obliquus extract on atorvastatin induced liver injury in mice[J]. Chinese Journal of Veterinary Medicine, 2019, 60(2): 18-26. | |
[15] | 乔羽, 项楠, 周忠光, 等. 桦褐孔菌醇提物对胃癌模型裸鼠和BGC-823胃癌细胞Ras/MAPK信号通路的影响[J]. 中医药信息, 2023, 40(11): 7-12. |
Qiao Y, Xiang N, Zhou ZG, et al. Effects of ethanol extract from Inonotus obliquus on ras/MAPK signaling pathway of gastric cancer model nude mice and BGC-823 gastric cancer cells[J]. Inf Tradit Chin Med, 2023, 40(11): 7-12. | |
[16] | 杨微, 陈志宝, 陈操, 等. 桦褐孔菌乙醇粗提物对朊病毒复制的抑制作用[J]. 现代食品科技, 2021, 37(7): 8-13, 7. |
Yang W, Chen ZB, Chen C, et al. Inhibition on prion replication by ethanol crude extracts from Inonotus obliquus[J]. Mod Food Sci Technol, 2021, 37(7): 8-13, 7. | |
[17] | 张松. 内毒素对畜禽机体产生的影响[J]. 畜牧兽医科学, 2022,(1): 124-125. |
Zhang S. The effects of endotoxins on the body of livestock and poultry[J]. Animal Husbandry and Veterinary Science, 2022,(1): 124-125. | |
[18] |
Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis[J]. Annu Rev Immunol, 2020, 38: 567-595.
doi: 10.1146/annurev-immunol-073119-095439 pmid: 32017655 |
[19] |
Ronkina N, Gaestel M. MAPK-activated protein kinases: servant or partner?[J]. Annu Rev Biochem, 2022, 91: 505-540.
doi: 10.1146/annurev-biochem-081720-114505 pmid: 35303787 |
[20] | Fu YJ, Xu B, Huang SW, et al. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models[J]. Acta Pharmacol Sin, 2021, 42(1): 88-96. |
[21] | Liu F, Smith AD, Solano-Aguilar G, et al. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models[J]. Microbiome, 2020, 8(1): 83. |
[22] |
Fan JJ, Liu ST, Ai ZY, et al. Fermented ginseng attenuates lipopolysaccharide-induced inflammatory responses by activating the TLR4/MAPK signaling pathway and remediating gut barrier[J]. Food Funct, 2021, 12(2): 852-861.
doi: 10.1039/d0fo02404j pmid: 33404578 |
[23] | Liao XT, Zhang WK, Dai HJ, et al. Neutrophil-derived IL-17 promotes ventilator-induced lung injury via p38 MAPK/MCP-1 pathway activation[J]. Front Immunol, 2021, 12: 768813. |
[24] |
Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases[J]. Nat Rev Drug Discov, 2003, 2(9): 717-726.
doi: 10.1038/nrd1177 pmid: 12951578 |
[25] | Izadparast F, Riahi-Zajani B, Yarmohammadi F, et al. Protective effect of berberine against LPS-induced injury in the intestine: a review[J]. Cell Cycle, 2022, 21(22): 2365-2378. |
[26] | 曹文娟. 沙眼衣原体pORF5质粒蛋白通过激活NALP3炎性复合体诱导THP-1细胞分泌IL-1β和IL-18[D]. 衡阳: 南华大学, 2014. |
Cao WJ. Chlamydia trachomatis pORF5 plasmid protein induces THP-1 cells to secrete IL-1β and IL-18 by activating NALP3 inflammatory complex[D]. Hengyang: University of South China, 2014. | |
[27] | 郑学森. IL-18通过共生菌调控肠道免疫系统稳态作用和机制的探究[D]. 合肥: 中国科学技术大学, 2021. |
Zheng XS. Study on the role and mechanism of IL-18 in regulating intestinal immune system homeostasis through symbiotic bacteria[D]. Hefei: University of Science and Technology of China, 2021. | |
[28] |
Ramli FF, Ali A, Ibrahim N. Molecular-signaling pathways of ginsenosides Rb in myocardial ischemia-reperfusion injury: a mini review[J]. Int J Med Sci, 2022, 19(1): 65-73.
doi: 10.7150/ijms.64984 pmid: 34975299 |
[29] | 崔贺铭. 桦褐孔菌醇提物的成分分析及其对大鼠心肌缺血再灌注损伤的保护作用研究[D]. 长春: 吉林大学, 2022. |
Cui HM. Composition analysis of alcohol extract from Inonotus obliquus and its protective effect on myocardial ischemia-reperfusion injury in rats[D]. Changchun: Jilin University, 2022. | |
[30] | Wold CW, Gerwick WH, Wangensteen H, et al. Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus(Chaga)with immunomodulatory activity[J]. J Funct Foods, 2020, 71: 104025. |
[31] | Kou RW, Han R, Gao YQ, et al. Anti-neuroinflammatory polyoxygenated lanostanoids from Chaga mushroom Inonotus obliquus[J]. Phytochemistry, 2021, 184: 112647. |
[32] | Yan KX, Zhou HY, Wang M, et al. Inhibitory effects of Inonotus obliquus polysaccharide on inflammatory response in Toxoplasma gondii- infected RAW264.7 macrophages[J]. Evid Based Complement Alternat Med, 2021, 2021: 2245496. |
[33] | 肖昆. 桦褐孔菌提取物缓解溃疡性结肠炎作用及机制研究[D]. 无锡: 江南大学, 2022. |
Xiao K. Study on the effect and mechanism of Inonotus obliquus extract in relieving ulcerative colitis[D]. Wuxi: Jiangnan University, 2022. | |
[34] | Kim J, Lee HJ, Park SK, et al. Donepezil regulates LPS and aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling[J]. Int J Mol Sci, 2021, 22(19): 10637. |
[35] | Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. |
[36] | 赵冠宇, 辛蕊华, 仇正英, 等. 基于NLRP3/Caspase-1/GSDMD信号通路研究乌梅丸对溃疡性结肠炎小鼠结肠上皮细胞焦亡的作用机制[J]. 中草药, 2023, 54(24): 8086-8093. |
Zhao GY, Xin RH, Qiu ZY, et al. Mechanism of Wumei Wan on colonic epithelial cell pyroptosis in mice with ulcerative colitis based on NLRP3/Caspase-1/GSDMD signaling pathway[J]. Chin Tradit Herb Drugs, 2023, 54(24): 8086-8093. | |
[37] | Xu YT, Tang XH, Fang AN, et al. HucMSC-Ex carrying miR-203a-3p.2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis[J]. Int Immunopharmacol, 2022, 110: 108925. |
[38] | Wang YP, Gao WQ, Shi XY, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. |
[1] | 雷棋怡, 徐杨, 李鹏飞. 脆弱拟杆菌六型分泌系统对肠道屏障的影响及机制[J]. 生物技术通报, 2024, 40(3): 286-295. |
[2] | 吴永娜, 滕文龙, 张磊, 王德富, 牛颜冰. 连翘叶茶对大鼠肝硬化的影响及其机理研究[J]. 生物技术通报, 2024, 40(11): 285-295. |
[3] | 焦帅, 付域泽, 崔凯, 张吉贤, 王杰, 毕研亮, 刁其玉, 张建新, 张乃锋. 短小芽孢杆菌对羔羊肠道炎症和屏障功能的影响[J]. 生物技术通报, 2024, 40(1): 344-352. |
[4] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
[5] | 陈建军, 赵怡迪, 曹香林. 脂多糖对鲤肠上皮细胞转录组模式的调控分析[J]. 生物技术通报, 2021, 37(8): 213-220. |
[6] | 李凯晴, 李莹, 王艺磊, 邹鹏飞. 受体相互作用蛋白的功能及在硬骨鱼类中的研究进展[J]. 生物技术通报, 2021, 37(5): 197-211. |
[7] | 张立兴, 王丽娜, 康广博, 黄鹤. 多组学分析在炎症性肠病中的应用与研究进展[J]. 生物技术通报, 2021, 37(1): 155-167. |
[8] | 李宗杰, 狄荻, 李蓓蓓. 肺部菌群与呼吸道疾病的相互关系[J]. 生物技术通报, 2020, 36(2): 188-192. |
[9] | 李晓玉, 刘霖, 邢兵, 汤婧, 刘亚平, 周祖平, 蒲仕明. 炎症与肿瘤发生对造血祖细胞发育失衡的影响[J]. 生物技术通报, 2019, 35(8): 155-161. |
[10] | 朱平, 杜力杰, 孟昆, 薛娟, 杨瑾, 李姗. 三型分泌系统效应蛋白调控细胞凋亡和焦亡的研究进展[J]. 生物技术通报, 2019, 35(4): 178-187. |
[11] | 董颖, 胡红霞, 田照辉, 王巍, 东天. 鲟鱼外周血淋巴细胞的分离及最佳体外增殖性反应条件[J]. 生物技术通报, 2018, 34(3): 150-155. |
[12] | 李聪聪, 赵金艳, 吴姣, 徐秋良. miR-155研究进展[J]. 生物技术通报, 2018, 34(11): 70-82. |
[13] | 李奕平,王潇. 核苷酸结合寡聚化结构域NOD样受体(NLRs)研究进展[J]. 生物技术通报, 2013, 0(7): 36-40. |
[14] | 段叶辉;印遇龙;李丽立;李凤娜;杨焕胜;孙效名;. n-3 PUFAs对脂质代谢和炎症-免疫的调节机制[J]. , 2012, 0(03): 28-34. |
[15] | 王银光;张琴;涂利宽;万敬员;李炯;罗文军;. 羟基红花黄色素A对脂多糖作用后血管内皮细胞诱导型一氧化氮合酶表达的影响[J]. , 2009, 0(07): 137-140. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||