生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 210-220.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0507
孔青洋(), 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐(
)
收稿日期:
2024-05-29
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
罗乐,男,博士,教授,研究方向:园林植物遗传育种;E-mail: luolebjfu@163.com作者简介:
孔青洋,男,硕士,研究方向:园林植物遗传育种;E-mail: kongqingyangd@163.com
基金资助:
KONG Qing-yang(), ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le(
)
Received:
2024-05-29
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】对单叶蔷薇(Rosa persica)GRAS基因家族成员进行鉴定及功能分析,为单叶蔷薇GRAS基因家族功能研究及育种应用奠定理论基础。【方法】以单叶蔷薇基因组为研究对象,对单叶蔷薇GRAS基因家族进行成员鉴定、结构分析、进化分析、顺式作用元件分析、GRAS蛋白二级结构、三级结构预测,结合转录组对组织部位、不同水平干旱和低温胁迫环境中基因表达进行分析。【结果】鉴定出42个GRAS基因家族成员,分布在 7条不同的染色体上;42个RbGRAS基因可分为9个亚族;基因结构分析表明RbGRAS基因具有保守的N端,而C端在结构上较多变;对基因家族成员共线性分析显示,有4对片段重复基因和4对串联重复基因;顺式作用元件分析发现,单叶蔷薇GRAS基因家族中含有丰富的激素应答元件和胁迫响应元件;RbGRAS蛋白二级预测结构以α-螺旋以及无规则卷曲为主,三级预测结果显示蛋白组成相似;组织特异性表达分析结果显示GRAS基因主要在根系和茎组织中表达,在花中表达量较低;RbGRAS基因在干旱和低温胁迫中也存在基因特异性表达。【结论】鉴定得到42个RbGRAS家族成员,均含有逆境相关作用元件,RbGRAS27和RbGRAS41分别对干旱和低温胁迫积极响应。
孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220.
KONG Qing-yang, ZHANG Xiao-long, LI Na, ZHANG Chen-jie, ZHANG Xue-yun, YU Chao, ZHANG Qi-xiang, LUO Le. Identification and Expression Analysis of GRAS Transcription Factor Family in Rosa persica[J]. Biotechnology Bulletin, 2025, 41(1): 210-220.
图2 单叶蔷薇 GRAS 家族蛋白的系统进化、保守基序及基因结构分析 刻度尺分别表示蛋白序列长度(aa)和基因长度(bp)
Fig. 2 Phylogeny, conserved motifs and gene structure analysis of GRAS family proteins in R. persica The scale indicates protein sequence length(aa)and gene length(bp), respectively
图4 单叶蔷薇GRAS 基因家族内部共线性分析、单叶蔷薇与拟南芥 GRAS 基因家族共线性分析 A:单叶蔷薇GRAS基因家族共线性分析;B:单叶蔷薇与拟南芥GRAS基因家族共线性分析
Fig. 4 Internal collinearity analysis of GRAS gene family of R. persica and the collinearity analysis of GRAS gene family R. persica and Arabidopsis thaliana A: Collinearity analysis of the GRAS gene family in R. persica. B: Analysis of collinearity between the GRAS gene family of R. persica and Arabidopsis thaliana
图6 单叶蔷薇GRAS基因启动子顺式作用元件数量统计 TC-rich repeats:防御和应激反应元件;ABRE:脱落酸反应元件;ARE:厌氧诱导调节元件;TGACG-motif/CGTCA-motif:茉莉酸甲酯反应元件;MBS:干旱诱导元件;TATC-box:赤霉素反应元件;LTR:低温响应元件;TCA-element:水杨酸反应元件;WUN-motif:创伤响应元件
Fig. 6 Statistics on the number of cis-acting elements in the GRAS gene promoter of R. persica TC-rich repeats: Defense and stress response elements; ABRE: abscisic acid response element; ARE: anaerobic induction regulatory element; TGACG-motif/CGTCA-motif: methyl jasmonate response element; MBS: drought-induced element; TATC-box: gibberellin response element; LTR: low temperature response element; TCA-element: salicylic acid response element; WUN-motif: wound-responsive element
图8 单叶蔷薇不同组织及不同胁迫中GRAS基因表达热图 Root、stem、leaf、flower、fruit:非胁迫下根、茎、叶、花和果实;CKr、CKl:干旱对照组根和叶;LDr、LDl:轻度干旱的根和叶;SDr、SDl:重度干旱的根和叶;G9-G4:野外环境下的2021年9月-2022年4月的叶;J9-J4:野外环境下2021年9月-2022年4月的茎
Fig. 8 Heatmap of GRAS gene expression in different tissues of R. persica under different stresses Root, stem, leaf, flower, fruit: Non-stressed roots, stems, leaves, flowers and fruits; CKr, CKl: control group roots and leaves; LDr, LDl: roots and leaves under mild drought stress; SDr, SDl: roots and leaves under severe drought stress. G9-G4: Leaves from September 2021 to April 2022 in the wild environment. J9-J4: Stems from September 2021 to April 2022 in the wild environment
[1] | 新疆植物志编辑委员会. 新疆植物志-第二卷, 第二分册-小檗科—蔷薇科[M]. 乌鲁木齐: 新疆科技卫生出版社, 1995. |
Editorial Committee for the Flora of Xinjiang. Flora xinjiangensis - Volume two, part two - Berberidaceae to Rosaceae[M]. Xinjiang Science, Technology and Public Health Press, 1995. | |
[2] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇生物学特性分析[J]. 山东林业科技, 2013, 43(4): 61-63. |
Hui JA, Zhang X, Wang SM. Analysis of biological characteristics of wild Hulthemia berberifolia(pall.)dumort in Xinjiang[J]. J Shandong For Sci Technol, 2013, 43(4): 61-63. | |
[3] | 中国科学院中国植物志编辑委员会. 中国植物志-第七十四卷[M]. 北京: 科学出版社, 1985: 370-371. |
Committee on the Flora of China, Chinese Academy of Sciences. Flora of China(37 vols)[M]. Beijing: Science Press, 1985: 370-371. | |
[4] | 丛者福. 新疆野蔷薇果的研究[J]. 干旱区资源与环境, 1996, 10(4): 100-102. |
Cong ZF. Study on the fruit of wild rose in Xinjiang[J]. Arid Land Resour Environ, 1996, 10(4): 100-102. | |
[5] | 范春国. 单叶蔷薇耐旱关键转录因子挖掘与功能初步验证[D]. 南京: 南京农业大学, 2021. |
Fan CG. Mining and functional verification of key transcription factors of drought tolerance in Rosa persica[D]. Nanjing: Nanjing Agricultural University, 2021. | |
[6] |
冯策婷, 江律, 刘鑫颖, 等. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0531 |
Feng CT, Jiang L, Liu XY, et al. Identification of the NAC gene family in Rosa persica and response analysis under drought stress[J]. Biotechnol Bull, 2023, 39(11): 283-296. | |
[7] | Zhuang YY, Zhou LJ, Geng LF, et al. Genome-wide identification of the bHLH transcription factor family in Rosa persica and response to low-temperature stress[J]. PeerJ, 2024, 12: e16568. |
[8] | Moradkhani S, Rezaei-Dehghanzadeh T, Nili-Ahmadabadi A. Rosa persica hydroalcoholic extract improves cadmium-hepatotoxicity by modulating oxidative damage and tumor necrosis factor-alpha status[J]. Environ Sci Pollut Res Int, 2020, 27(25): 31259-31268. |
[9] | 欧哲, 杨宇, 冯策婷, 等. 单叶蔷薇远缘杂交中花粉管生长的荧光显微观察[J]. 东北农业大学学报, 2022, 53(10): 18-26. |
Ou Z, Yang Y, Feng CT, et al. Fluorescent microscope observation on growth of pollen tube on distant hybridization in Rosa persica[J]. J Northeast Agric Univ, 2022, 53(10): 18-26. | |
[10] |
Pysh LD, Wysocka-Diller JW, Camilleri C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18(1): 111-119.
pmid: 10341448 |
[11] |
Sun XL, Xue B, Jones WT, et al. A functionally required unfoldome from the plant Kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development[J]. Plant Mol Biol, 2011, 77(3): 205-223.
doi: 10.1007/s11103-011-9803-z pmid: 21732203 |
[12] | Khan Y, Xiong Z, Zhang H, et al. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review[J]. Plant Biol, 2022, 24(3): 404-416. |
[13] | Tian CG, Wan P, Sun SH, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Mol Biol, 2004, 54(4): 519-532. |
[14] |
Li Z, Tu QC, Lyu XG, et al. GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean[J]. Crop J, 2024, 12(2): 432-442.
doi: 10.1016/j.cj.2024.01.013 |
[15] |
Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555-567.
doi: 10.1016/s0092-8674(00)80865-x pmid: 10850497 |
[16] |
Wang ZM, Wong DCJ, Wang Y, et al. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response[J]. Plant Physiol, 2021, 186(3): 1660-1678.
doi: 10.1093/plphys/kiab142 pmid: 33752238 |
[17] | Zhang S, Li XW, Fan SD, et al. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2020, 151: 243-254. |
[18] |
Silverstone AL, Ciampaglio CN, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell, 1998, 10(2): 155-169.
doi: 10.1105/tpc.10.2.155 pmid: 9490740 |
[19] |
Dinneny JR, Benfey PN. Plant stem cell niches: standing the test of time[J]. Cell, 2008, 132(4): 553-557.
doi: 10.1016/j.cell.2008.02.001 pmid: 18295573 |
[20] |
Han H, Yan A, Li LH, et al. A signal cascade originated from epidermis defines apical-basal patterning of Arabidopsis shoot apical meristems[J]. Nat Commun, 2020, 11(1): 1214.
doi: 10.1038/s41467-020-14989-4 pmid: 32139673 |
[21] |
Morohashi K, Minami M, Takase H, et al. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression[J]. J Biol Chem, 2003, 278(23): 20865-20873.
doi: 10.1074/jbc.M301712200 pmid: 12657631 |
[22] | 孙彦琳, 于超, 罗乐. 单叶蔷薇bZIP转录因子家族鉴定与表达分析[J]. 西北农林科技大学学报: 自然科学版, 2022, 50(6): 82-92. |
Sun YL, Yu C, Luo L, et al. Identification and expression analysis of bZIP transcription factor family in Rosa persica[J]. J Northwest A F Univ Nat Sci Ed, 2022, 50(6): 82-92. | |
[23] |
于婷婷, 李欢, 宁源生, 等. 苹果GRAS全基因组鉴定及其对生长素的响应分析[J]. 园艺学报, 2023, 50(2): 397-409.
doi: 10.16420/j.issn.0513-353x.2021-1039 |
Yu TT, Li H, Ning YS, et al. Genome-wide identification of GRAS gene family in apple and expression analysis of its response to auxin[J]. Acta Hortic Sin, 2023, 50(2): 397-409. | |
[24] | Kumari P, Gahlaut V, Kaur E, et al. Genome-wide identification of GRAS transcription factors and their potential roles in growth and development of rose(Rosa chinensis)[J]. J Plant Growth Regul, 2023, 42(3): 1505-1521. |
[25] | 牛义岭. 番茄GRAS基因家族生物信息学分析及部分抗性相关基因鉴定分析[D]. 哈尔滨: 东北农业大学, 2017. |
Niu YL. Bioinformatics analysis of GRAS gene family in tomato and identification of some resistance-related genes[D]. Harbin: Northeast Agricultural University, 2017. | |
[26] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的染色体核型分析[J]. 山东林业科技, 2013, 43(4): 58-60. |
Hui JA, Zhang X, Wang SM. Karyotype analysis of Xin Jiang wild Hulthemia berberifolia(Pall.)Dumort[J]. J Shandong For Sci Technol, 2013, 43(4): 58-60. | |
[27] |
Shaul O. How introns enhance gene expression[J]. Int J Biochem Cell Biol, 2017, 91(Pt B): 145-155.
doi: S1357-2725(17)30154-1 pmid: 28673892 |
[28] | Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biol, 2004, 4: 10. |
[29] | Wei XP, Liu LY, Liu G, et al. Methyl jasmonate promotes suberin biosynthesis by stimulating transcriptional activation of AchMYC2 on AchFHT in wound healing of kiwifruit[J]. Postharvest Biol Technol, 2024, 210: 112741. |
[30] | 赵曼如, 胡文忠, 于皎雪, 等. 茉莉酸甲酯对果蔬抗性、抗氧化活性及品质影响的研究进展[J]. 食品工业科技, 2020, 41(4): 328-332. |
Zhao MR, Hu WZ, Yu JX, et al. Research progress on effects of methyl jasmonate on resistance, antioxidant activity and quality of fruits and vegetables[J]. Sci Technol Food Ind, 2020, 41(4): 328-332. | |
[31] | Feng M, Zhang A, Nguyen V, et al. A conserved graft formation process in Norway spruce and Arabidopsis identifies the PAT gene family as central regulators of wound healing[J]. Nat Plants, 2024, 10(1): 53-65. |
[32] |
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development[J]. J Exp Bot, 2011, 62(10): 3321-3338.
doi: 10.1093/jxb/err031 pmid: 21357767 |
[33] | 龙亚芹, 王万东, 王美存, 等. 水杨酸(SA)诱导植物对病虫害产生抗性及作用机制研究[J]. 热带农业科学, 2009, 29(12): 46-50. |
Long YQ, Wang WD, Wang MC, et al. Salicylic acid induced resistance of plants against insects and diseases and its interaction mechanism[J]. Chin J Trop Agric, 2009, 29(12): 46-50. | |
[34] | Incarbone M, Bradamante G, Pruckner F, et al. Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells[J]. Proc Natl Acad Sci U S A, 2023, 120(42): e2302069120. |
[35] | Li SL, Li XN, Wei ZH, et al. ABA-mediated modulation of elevated CO2 on stomatal response to drought[J]. Curr Opin Plant Biol, 2020, 56: 174-180. |
[36] | Zhong MS, Jiang H, Cao Y, et al. MdCER2 conferred to wax accumulation and increased drought tolerance in plants[J]. Plant Physiol Biochem, 2020, 149: 277-285. |
[37] | 张晓龙, 邓童, 刘学森, 等. 单叶蔷薇幼苗根系对不同潜水埋深的适应机制[J]. 生态学报, 2022, 42(15): 6137-6149. |
Zhang XL, Deng T, Liu XS, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecol Sin, 2022, 42(15): 6137-6149. | |
[38] | Lucas M, Swarup R, Paponov IA, et al. Short-Root regulates primary, lateral, and adventitious root development in Arabidopsis[J]. Plant Physiol, 2011, 155(1): 384-398. |
[1] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[2] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[3] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[4] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[5] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[6] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[7] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[8] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[9] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[10] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[11] | 韩凯, 周永顺, 张凯月, 王路, 高剑峰, 陈福龙. 三株小球藻抗旱性能评价[J]. 生物技术通报, 2024, 40(8): 244-254. |
[12] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[13] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
[14] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
[15] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||