生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 30-39.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0526
收稿日期:
2024-05-31
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
施威扬,男,博士,教授,研究方向 :多组学及单细胞测序;E-mail: shiwy1975@163.com作者简介:
周文健,男,硕士,研究方向 :表观遗传学;E-mail: 1372036248@qq.com
基金资助:
ZHOU Wen-jian(), CUI Xiao-nan, SHI Wei-yang(
)
Received:
2024-05-31
Published:
2025-02-26
Online:
2025-02-28
摘要:
DNA甲基转移酶是一类在DNA甲基化过程中起到关键作用的酶。在生物体内,DNA甲基转移酶可以将甲基基团添加到核酸分子上,从而引入DNA甲基化修饰,改变遗传表现并调控基因表达。DNA甲基转移酶可以在体外进行融合重组表达,并导入细胞在染色质上引入人为的DNA甲基化修饰。利用这一特性,近年来,科研人员通过对基因组特定位置进行甲基化标记,并结合高通量测序,开发了多种基于DNA甲基转移酶的表观遗传测序技术,其应用包括染色质可及性测量、核小体定位、转录因子印迹和组蛋白修饰检测等。这些技术在获得表观遗传修饰信息的同时也可以获得基因组学信息以及内源性的DNA甲基化信息,因此成为了表观遗传学的重要检测方法。本文介绍了表观遗传修饰研究方法,综述了多种基于DNA甲基转移酶检测表观遗传修饰的测序技术的原理及应用,并对其未来的发展进行了讨论与展望,以期为表观遗传学的研究提供参考。
周文健, 崔晓楠, 施威扬. DNA甲基转移酶在表观遗传学中的应用研究进展[J]. 生物技术通报, 2025, 41(2): 30-39.
ZHOU Wen-jian, CUI Xiao-nan, SHI Wei-yang. Research Progress in the Application of DNA Methyltransferases in Epigenetics[J]. Biotechnology Bulletin, 2025, 41(2): 30-39.
技术 Technology | 应用 Application | 酶使用类型 Type of enzyme | 引入甲基化 Introducing methylation type | 抗体使用 Application of antibody | 反应方式 Mode of reaction | 测序方法 Sequencing method |
---|---|---|---|---|---|---|
nanoNOMe-seq | 染色质可及性/CpG甲基化 | M.CviPI | Gp5mC | 不需要 | 直接反应 | 纳米孔测序 |
SMAC-seq | 染色质可及性/核小体定位 | M.CviPI/M.SssI/EcoGII | Gp5mC/5mCpG/6mA | 不需要 | 直接反应 | 纳米孔测序 |
DiMeLo-seq | DNA-蛋白互作/组蛋白修饰 | Protein A-Hia5 | 6mA | 需要 | 抗体介导后反应 | 纳米孔测序 |
表1 三种技术的应用及方法学比较
Table 1 Comparison of applications and methodologies of three technologies
技术 Technology | 应用 Application | 酶使用类型 Type of enzyme | 引入甲基化 Introducing methylation type | 抗体使用 Application of antibody | 反应方式 Mode of reaction | 测序方法 Sequencing method |
---|---|---|---|---|---|---|
nanoNOMe-seq | 染色质可及性/CpG甲基化 | M.CviPI | Gp5mC | 不需要 | 直接反应 | 纳米孔测序 |
SMAC-seq | 染色质可及性/核小体定位 | M.CviPI/M.SssI/EcoGII | Gp5mC/5mCpG/6mA | 不需要 | 直接反应 | 纳米孔测序 |
DiMeLo-seq | DNA-蛋白互作/组蛋白修饰 | Protein A-Hia5 | 6mA | 需要 | 抗体介导后反应 | 纳米孔测序 |
图1 NOMe-seq技术和nanoNOMe-seq技术原理A:核小体定位及DNA甲基化组测序(NOMe-seq);B:核小体定位及DNA甲基化组纳米孔测序(nanoNOMe-seq)
Fig. 1 Principle of NOMe-seq and nanoNOMe-seq technologyA: Nucleosome occupancy and methylome sequencing (NOMe-seq ). B: Nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe-seq)
1 | Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription [J]. J Struct Biol, 2000, 129(2/3): 102-122. |
2 | Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals [J]. Nat Genet, 2003, 33 Suppl: 245-254. |
3 | Carter B, Zhao KJ. The epigenetic basis of cellular heterogeneity [J]. Nat Rev Genet, 2021, 22(4): 235-250. |
4 | Luo CY, Hajkova P, Ecker JR. Dynamic DNA methylation: in the right place at the right time [J]. Science, 2018, 361(6409): 1336-1340. |
5 | Minnoye L, Marinov GK, Krausgruber T, et al. Chromatin accessibility profiling methods [J]. Nat Rev Methods Primers, 2021, 1: 10. |
6 | Boyle AP, Davis S, Shulha HP, et al. High-resolution mapping and characterization of open chromatin across the genome [J]. Cell, 2008, 132(2): 311-322. |
7 | Hesselberth JR, Chen XY, Zhang ZH, et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting [J]. Nat Methods, 2009, 6(4): 283-289. |
8 | Schones DE, Cui KR, Cuddapah S, et al. Dynamic regulation of nucleosome positioning in the human genome [J]. Cell, 2008, 132(5): 887-898. |
9 | Picelli S, Björklund AK, Reinius B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects [J]. Genome Res, 2014, 24(12): 2033-2040. |
10 | Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position [J]. Nat Methods, 2013, 10(12): 1213-1218. |
11 | Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions [J]. Science, 2007, 316(5830): 1497-1502. |
12 | Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [J]. eLife, 2017, 6: e21856. |
13 | Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers [J]. Nat Protoc, 2018, 13(5): 1006-1019. |
14 | Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells [J]. Nat Commun, 2019, 10(1): 1930. |
15 | Kaya-Okur HS, Janssens DH, Henikoff JG, et al. Efficient low-cost chromatin profiling with CUT&Tag [J]. Nat Protoc, 2020, 15(10): 3264-3283. |
16 | Li E, Zhang Y. DNA methylation in mammals [J]. Cold Spring Harb Perspect Biol, 2014, 6(5): a019133. |
17 | Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases [J]. Annu Rev Biochem, 2005, 74: 481-514. |
18 | Seong HJ, Han SW, Sul WJ. Prokaryotic DNA methylation and its functional roles [J]. J Microbiol, 2021, 59(3): 242-248. |
19 | Ershova AS, Rusinov IS, Spirin SA, et al. Role of restriction-modification systems in prokaryotic evolution and ecology [J]. Biochemistry, 2015, 80(10): 1373-1386. |
20 | Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria [J]. FEMS Microbiol Rev, 2016, 40(5): 575-591. |
21 | Ren J, Singh BN, Huang Q, et al. DNA hypermethylation as a chemotherapy target [J]. Cell Signal, 2011, 23(7): 1082-1093. |
22 | Jin BL, Li YJ, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? [J]. Genes Cancer, 2011, 2(6): 607-617. |
23 | Miremadi A, Oestergaard MZ, Pharoah PDP, et al. Cancer genetics of epigenetic genes [J]. Hum Mol Genet, 2007, 16 Spec No 1: R28-R49. |
24 | Ferguson-Smith AC, Greally JM. Epigenetics: perceptive enzymes [J]. Nature, 2007, 449(7159): 148-149. |
25 | Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases [J]. Trends Biochem Sci, 2006, 31(6): 306-308. |
26 | Buryanov Y, Shevchuk T. The use of prokaryotic DNA methyltransferases as experimental and analytical tools in modern biology [J]. Anal Biochem, 2005, 338(1): 1-11. |
27 | Lee I, Razaghi R, Gilpatrick T, et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing [J]. Nat Methods, 2020, 17(12): 1191-1199. |
28 | Shipony Z, Marinov GK, Swaffer MP, et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes [J]. Nat Methods, 2020, 17(3): 319-327. |
29 | Altemose N, Maslan A, Smith OK, et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide [J]. Nat Methods, 2022, 19(6): 711-723. |
30 | Kelly TK, Liu YP, Lay FD, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules [J]. Genome Res, 2012, 22(12): 2497-2506. |
31 | Xu M, Kladde MP, Van Etten JL, et al. Cloning, characterization and expression of the gene coding for a cytosine-5-DNA methyltransferase recognizing GpC [J]. Nucleic Acids Res, 1998, 26(17): 3961-3966. |
32 | Lay FD, Liu YP, Kelly TK, et al. The role of DNA methylation in directing the functional organization of the cancer epigenome [J]. Genome Res, 2015, 25(4): 467-477. |
33 | Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells [J]. eLife, 2017, 6: e23203. |
34 | Guo HS, Hu BQ, Yan LY, et al. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells [J]. Cell Res, 2017, 27(2): 165-183. |
35 | Gao JP, Zheng YX, Li L, et al. Integrated transcriptomics and epigenomics reveal chamber-specific and species-specific characteristics of human and mouse hearts [J]. PLoS Biol, 2021, 19(5): e3001229. |
36 | Wang YH, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications [J]. Nat Biotechnol, 2021, 39(11): 1348-1365. |
37 | White LK, Hesselberth JR. Modification mapping by nanopore sequencing [J]. Front Genet, 2022, 13: 1037134. |
38 | Kerr L, Kafetzopoulos I, Grima R, et al. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation [J]. PLoS Genet, 2023, 19(10): e1010958. |
39 | Renbaum P, Abrahamove D, Fainsod A, et al. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI) [J]. Nucleic Acids Res, 1990, 18(5): 1145-1152. |
40 | Murray IA, Morgan RD, Luyten Y, et al. The non-specific adenine DNA methyltransferase M.EcoGII [J]. Nucleic Acids Res, 2018, 46(2): 840-848. |
41 | Marinov GK, Shipony Z, Kundaje A, et al. Single-molecule multikilobase-Scale profiling of chromatin accessibility using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq [J]. Methods Mol Biol, 2022, 2458: 269-298. |
42 | Drozdz M, Piekarowicz A, Bujnicki JM, et al. Novel non-specific DNA adenine methyltransferases [J]. Nucleic Acids Res, 2012, 40(5): 2119-2130. |
43 | Weng Z, Ruan FY, Chen WT, et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes [J]. Genome Biol, 2023, 24(1): 61. |
44 | Kriukienė E, Labrie V, Khare T, et al. DNA unmethylome profiling by covalent capture of CpG sites [J]. Nat Commun, 2013, 4: 2190. |
45 | Gabrieli T, Michaeli Y, Avraham S, et al. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping [J]. Nucleic Acids Res, 2022, 50(16): e92. |
46 | Chen YR, Yu S, Zhong SL. Profiling DNA methylation using bisulfite sequencing (BS-seq) [J]. Methods Mol Biol, 2018, 1675: 31-43. |
47 | Booth MJ, Branco MR, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution [J]. Science, 2012, 336(6083): 934-937. |
48 | Li XW, Guo SY, Cui Y, et al. NT-seq: a chemical-based sequencing method for genomic methylome profiling [J]. Genome Biol, 2022, 23(1): 122. |
49 | Liu YB, Siejka-Zielińska P, Velikova G, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution [J]. Nat Biotechnol, 2019, 37(4): 424-429. |
50 | Vaisvila R, Chaithanya Ponnaluri VK, Sun ZY, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA [J]. Genome Res, 2021, 31(7): 1280-1289. |
51 | Wang T, Fowler JM, Liu L, et al. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution [J]. Nat Chem Biol, 2023, 19(8): 1004-1012. |
52 | Feng XR, Cui XL, Zhang LS, et al. Sequencing of N 6-methyl-deoxyadenosine at single-base resolution across the mammalian genome [J]. Mol Cell, 2024, 84(3): 596-610.e6. |
53 | Dai Q, Ye C, Irkliyenko I, et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA [J]. Nat Biotechnol, 2024, 42(10): 1559-1570. |
54 | Tirnaz S, Batley J. Epigenetics: potentials and challenges in crop breeding [J]. Mol Plant, 2019, 12(10): 1309-1311. |
55 | Dalakouras A, Vlachostergios D. Epigenetic approaches to crop breeding: current status and perspectives [J]. J Exp Bot, 2021, 72(15): 5356-5371. |
56 | Shi YC, Zhang HJ, Huang SL, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials [J]. Signal Transduct Target Ther, 2022, 7(1): 200. |
57 | Shu F, Xiao H, Li QN, et al. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets [J]. Signal Transduct Target Ther, 2023, 8(1): 32. |
[1] | 袁明波, 叶国华, 杨丹, 宋冬雪. DNA甲基化测序技术研究进展[J]. 生物技术通报, 2024, 40(5): 58-65. |
[2] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[3] | 司诚, 钟启文, 杨世鹏. 基于PacBio三代测序的香瓜茄(人参果)基因组的组装[J]. 生物技术通报, 2022, 38(9): 180-190. |
[4] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[5] | 王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39. |
[6] | 王建勇, 邹永梅, 葛言彬, 王凯, 席梦利. 植物愈伤组织诱导过程中的表观遗传修饰研究进展[J]. 生物技术通报, 2021, 37(8): 253-262. |
[7] | 过冬冬, 孙芬, 贺轩昂, 羊东晔, 黄来强. 单细胞测序技术在肝脏疾病的应用与展望[J]. 生物技术通报, 2021, 37(1): 137-144. |
[8] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[9] | 刘治民, 杨芷怡, 冀凤丹, 梅志超, 于佳慧, 解莉楠. 非生物胁迫下植物DNA甲基化研究进展[J]. 生物技术通报, 2020, 36(11): 122-132. |
[10] | 江芮, 吕柯孬, 潘学峰, 崔新霞, 申世刚, 丁良. 表观遗传药物研发的现状与挑战[J]. 生物技术通报, 2019, 35(8): 213-225. |
[11] | 唐勇, 刘旭. 基于SMRT测序技术的16S rRNA基因全长测序及其分析方法[J]. 生物技术通报, 2017, 33(8): 34-39. |
[12] | 奥旭东,萨如拉,王杰,王会敏,于海泉. 牛早期胚胎发育中AID基因的表达及其调节区DNA甲基化的动态变化[J]. 生物技术通报, 2016, 32(7): 242-249. |
[13] | 赵倩,王巍,孙野青. 植物DNA甲基化与基因表达的关联性研究进展[J]. 生物技术通报, 2016, 32(4): 16-23. |
[14] | 杨伟,潘宇,苏承刚,张兴国,李金华. 番茄JMJ524基因调控SlGLD1的DNA甲基化分析[J]. 生物技术通报, 2016, 32(12): 79-85. |
[15] | 赵静, 李楠, 吴茹, 杨占威, 胡文兵, 王文君. 食物功能性成分对动物基因组DNA甲基化影响的研究进展[J]. 生物技术通报, 2016, 32(1): 15-19. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||