生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 122-132.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0330
刘治民(), 杨芷怡, 冀凤丹, 梅志超, 于佳慧, 解莉楠()
收稿日期:
2020-03-25
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
刘治民,男,研究方向:生物科学;E-mail: 基金资助:
LIU Zhi-min(), YANG Zhi-yi, JI Feng-dan, MEI Zhi-chao, YU Jia-hui, XIE Li-nan()
Received:
2020-03-25
Published:
2020-11-26
Online:
2020-11-20
摘要:
非生物胁迫,包括高温、干旱、寒冷、洪涝和盐碱化等,通常不利于植物生长发育。在植物长期的自然选择和进化过程中,植物已经形成了一套完整的体系,以应对外界不断变化的环境。在真核细胞中,蛋白质编码基因的表达在很大程度上受到染色质状态的影响。表观遗传修饰,主要包括DNA甲基化,组蛋白修饰,组蛋白变体和一些非编码RNA(Non-coding RNA,ncRNA)的变化,会影响染色质的结构和可及性,进而改变基因表达的活性。近年来研究表明,表观遗传修饰广泛参与植物非生物胁迫响应,对植物适应不断变化的环境十分重要。作为最重要的表观遗传修饰之一,DNA甲基化在调控非生物胁迫响应中的作用引起了人们的广泛关注。主要综述植物DNA甲基化和非生物胁迫下DNA甲基化动态性研究的最新进展,以期为利用表观遗传变异提高植物的抗胁迫能力提供参考。
刘治民, 杨芷怡, 冀凤丹, 梅志超, 于佳慧, 解莉楠. 非生物胁迫下植物DNA甲基化研究进展[J]. 生物技术通报, 2020, 36(11): 122-132.
LIU Zhi-min, YANG Zhi-yi, JI Feng-dan, MEI Zhi-chao, YU Jia-hui, XIE Li-nan. Research Progress of Plant DNA Methylation Under Abiotic Stress[J]. Biotechnology Bulletin, 2020, 36(11): 122-132.
[1] |
Zhu J. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL pmid: 27716505 |
[2] |
Fedoroff NV, Battisti DS, Beachy RN, et al. Radically rethinking agriculture for the 21st century[J]. Science, 2010,327(5967):833-834.
URL pmid: 20150494 |
[3] |
Boyko A, Kovalchuk I. Epigenetic control of plant stress response[J]. Environmental and Molecular Mutagenesis, 2008,49(1):61-72.
doi: 10.1002/em.20347 URL pmid: 17948278 |
[4] |
Sun X, Zheng H, Sui N. Regulation mechanism of long non-coding RNA in plant response to stress[J]. Biochemical and Biophysical Research Communications, 2018,503(2):402-407.
URL pmid: 30055799 |
[5] |
Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports, 2011,30(8):1383-1391.
doi: 10.1007/s00299-011-1068-0 URL pmid: 21476089 |
[6] |
Wang L, Wu J, Chang W, et al. Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants[J]. Journal of Experimental Botany, 2013,64(6):1689-1701.
doi: 10.1093/jxb/ert030 URL pmid: 23408827 |
[7] |
Wang H, Wang H, Shao H, et al. Recent advances in uilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016,7:67.
doi: 10.3389/fpls.2016.00067 URL pmid: 26904044 |
[8] |
Deinlein U, Stephan AB, Horie T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014,19(6):371-379.
doi: 10.1016/j.tplants.2014.02.001 URL pmid: 24630845 |
[9] |
Tang X, Mu X, Shao H, et al. Global plant-responding mechanisms to salt stress:physiological and molecular levels and implications in biotechnology[J]. Crit Rev Biotechnol, 2015,35(4):425-437.
doi: 10.3109/07388551.2014.889080 URL pmid: 24738851 |
[10] |
Miura K, Furumoto T. Cold signaling and cold response in plants[J]. International Journal of Molecular Sciences, 2013,14(3):5312-5337.
URL pmid: 23466881 |
[11] |
Saidi Y, Finka A, Goloubinoff P. Heat perception and signalling in plants:a tortuous path to thermotolerance[J]. New Phytol, 2011,190(3):556-565.
doi: 10.1111/j.1469-8137.2010.03571.x URL pmid: 21138439 |
[12] |
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China[J]. J Genet Genomics, 2018,45(11):621-638.
doi: 10.1016/j.jgg.2018.09.004 URL pmid: 30455036 |
[13] |
Popova OV, Dinh HQ, Aufsatz W, et al. The RdDM pathway is required for basal heat tolerance in Arabidopsis[J]. Molecular Plant, 2013,6(2):396-410.
doi: 10.1093/mp/sst023 URL |
[14] |
Xu R, Wang Y, Zheng H, et al. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis[J]. Journal of Experimental Botany, 2015,66(19):5997-6008.
doi: 10.1093/jxb/erv312 URL pmid: 26139822 |
[15] |
Zhang H, Lang Z, Zhu J. Dynamics and function of DNA methylation in plants[J]. Nature reviews. Molecular Cell Biology, 2018,19(8):489-506.
doi: 10.1038/s41580-018-0016-z URL pmid: 29784956 |
[16] |
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010,11(3):204-220.
doi: 10.1038/nrg2719 URL pmid: 20142834 |
[17] |
He XJ, Ma ZY, Liu ZW. Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis[J]. Mol Plant, 2014,7(9):1406-1414.
doi: 10.1093/mp/ssu075 URL pmid: 24966349 |
[18] |
Matzke MA, Mosher RA. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J]. Nat Rev Genet, 2014,15(6):394-408.
doi: 10.1038/nrg3683 URL pmid: 24805120 |
[19] |
Zhang H, Zhu JK. RNA-directed DNA methylation[J]. Curr Opin Plant Biol, 2011,14(2):142-147.
doi: 10.1016/j.pbi.2011.02.003 URL pmid: 21420348 |
[20] |
Pikaard CS, Haag JR, Pontes OM, et al. A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation[J]. Cold Spring Harb Symp Quant Biol, 2012,77:205-212.
URL pmid: 23567894 |
[21] |
Zhong X, Du J, Hale CJ, et al. Molecular mechanism of action of pant DRM de novo DNA methyltransferases[J]. Cell, 2014,157(5):1050-1060.
doi: 10.1016/j.cell.2014.03.056 URL pmid: 24855943 |
[22] |
Law JA, Du J, Hale CJ, et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1[J]. Nature, 2013,498(7454):385-389.
doi: 10.1038/nature12178 URL pmid: 23636332 |
[23] |
Smith LM, Pontes O, Searle I, et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis[J]. The Plant Cell, 2007,19(5):1507-1521.
doi: 10.1105/tpc.107.051540 URL pmid: 17526749 |
[24] |
Zhang H, Ma Z, Zeng L, et al. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(20):8290-8295.
URL pmid: 23637343 |
[25] |
Johnson LM, Du J, Hale CJ, et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation[J]. Nature, 2014,507(7490):124-128.
doi: 10.1038/nature12931 URL pmid: 24463519 |
[26] |
Zhang H, Tang K, Qian W, et al. An Rrp6-like protein positively regulates non-coding RNA levels and DNA methylation in Arabidopsis[J]. Molecular Cell, 2014,54(3):418-430.
doi: 10.1016/j.molcel.2014.03.019 URL pmid: 24726328 |
[27] |
Zhang C, Ning Y, Zhang S, et al. IDN2 and its paralogs form a complex required for RNA-directed DNA methylation[J]. PLoS Genetics, 2012,8(5):e1002693.
doi: 10.1371/journal.pgen.1002693 URL |
[28] |
Zhu Y, Rowley MJ, Böhmdorfer G, et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing[J]. Molecular Cell, 2013,49(2):298-309.
doi: 10.1016/j.molcel.2012.11.011 URL |
[29] |
Nuthikattu S, Mccue AD, Panda K, et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs1[W][OA][J]. Plant Physiology, 2013,162(1):116-131.
doi: 10.1104/pp.113.216481 URL |
[30] |
Mccue AD, Panda K, Nuthikattu S, et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation[J]. The EMBO Journal, 2015,34(1):20-35.
doi: 10.15252/embj.201489499 URL pmid: 25388951 |
[31] |
Marí-Ordóñez A, Marchais A, Etcheverry M, et al. Reconstructing de novo silencing of an active plant retrotransposon[J]. Nature Genetics, 2013,45(9):1029-1039.
doi: 10.1038/ng.2703 URL pmid: 23852169 |
[32] |
Ye R, Chen Z, Lian B, et al. A dicer-independent route for biogen-esis of siRNAs that direct DNA methylation in Arabidopsis[J]. Molecular Cell, 2016,61(2):222-235.
URL pmid: 26711010 |
[33] |
Kankel MW, Ramsey DE, Stokes TL, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003,163(3):1109-1122.
URL pmid: 12663548 |
[34] |
Stroud H, Do T, Du J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nature Structural & Molecular Biology, 2014,21(1):64-72.
doi: 10.1038/nsmb.2735 URL pmid: 24336224 |
[35] |
Lindroth AM, Cao X, Jackson JP, et al. Requirement of chromomethylase3 for maintenance of CpXpG methylation[J]. Science, 2001,292(5524):2077-2080.
doi: 10.1126/science.1059745 URL pmid: 11349138 |
[36] |
Du J, Zhong X, Bernatavichute YV, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants[J]. Cell, 2012,151(1):167-180.
URL pmid: 23021223 |
[37] |
Du J, Johnson LM, Groth M, et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE[J]. Molecular Cell, 2014,55(3):495-504.
doi: 10.1016/j.molcel.2014.06.009 URL pmid: 25018018 |
[38] |
Liu ZW, Shao CR, Zhang CJ, et al. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci[J]. PLoS Genet, 2014,10(1):e1003948.
URL pmid: 24465213 |
[39] |
Zemach A, Kim M Y, Hsieh P, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin[J]. Cell, 2013,153(1):193-205.
doi: 10.1016/j.cell.2013.02.033 URL pmid: 23540698 |
[40] |
Liu R, Lang Z. The mechanism and function of active DNA demethylation in plants[J]. Journal of Integrative Plant Biology, 2020,62(1):148-159.
URL pmid: 31628716 |
[41] |
Gong Z, Morales-Ruiz T, Ariza RR, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002,111(6):803-814.
doi: 10.1016/s0092-8674(02)01133-9 URL pmid: 12526807 |
[42] |
Gehring M, Huh JH, Hsieh T, et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation[J]. Cell, 2006,124(3):495-506.
doi: 10.1016/j.cell.2005.12.034 URL pmid: 16469697 |
[43] |
Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, et al. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Molecular Biology, 2008,67(6):671-681.
doi: 10.1007/s11103-008-9346-0 URL pmid: 18493721 |
[44] |
Qian W, Miki D, Zhang H, et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis[J]. Science, 2012,336(6087):1445-1448.
doi: 10.1126/science.1219416 URL pmid: 22700931 |
[45] |
Li Y, Cordoba-Canero D, Qian W, et al. An AP endonuclease functions in active DNA dimethylation and gene imprinting in Arabidopsis[J]. PLoS Genet, 2015,11(1):e1004905.
URL pmid: 25569774 |
[46] |
Martinez-Macias MI, Qian W, Miki D, et al. A DNA 3' phosphatase functions in active DNA demethylation in Arabidopsis[J]. Mol Cell, 2012,45(3):357-370.
doi: 10.1016/j.molcel.2011.11.034 URL pmid: 22325353 |
[47] |
Li Y, Duan C, Zhu X, et al. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis[J]. Cell Research, 2015,25(6):757-760.
doi: 10.1038/cr.2015.45 URL pmid: 25906993 |
[48] |
Rus A, Yokoi S, Sharkhuu A, et al. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(24):14150-14155.
doi: 10.1073/pnas.241501798 URL pmid: 11698666 |
[49] |
Baek D, Jiang J, Chung J, et al. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance[J]. Plant & Cell Physiology, 2011,52(1):149-161.
doi: 10.1093/pcp/pcq182 URL pmid: 21097475 |
[50] |
Kumar S, Beena AS, Awana M, et al. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat(Triticum aestivum L.)genotypes[J]. DNA and Cell Biology, 2017,36(4):283-294.
URL pmid: 28384069 |
[51] |
Song Y, Ji D, Li S, et al. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean[J]. PLoS One, 2012,7(7):e41274.
doi: 10.1371/journal.pone.0041274 URL pmid: 22815985 |
[52] | Huang W, Xian Z, Hu G, et al. SlAGO4A, a core factor of RNA-directed DNA methylation(RdDM)pathway, plays an important role under salt and drought stress in tomato[J]. Molecular Breeding, 2016,36(3):28. |
[53] | Liang D, Zhang Z, Wu H, et al. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress[J]. BMC Genetics, 2014,15(Suppl 1):S9. |
[54] |
Komivi D, Marie AM, Rong Z, et al. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame[J]. Plant Science, 2018,277:207-217.
doi: 10.1016/j.plantsci.2018.09.012 URL pmid: 30466587 |
[55] |
Sharma R, Vishal P, Kaul S, et al. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea(L.)Czern.[J]. Plant Cell Reports, 2017,36(1):203-217.
doi: 10.1007/s00299-016-2072-1 URL pmid: 27844102 |
[56] |
Moglia A, Gianoglio S, Acquadro A, et al. Identification of DNA methyltransferases and demethylases in Solanum melongena L. , and their transcription dynamics during fruit development and after salt and drought stresses[J]. PLoS One, 2019,14(10):e0223581.
URL pmid: 31596886 |
[57] |
Sanghera GS, Wani SH, Hussain W, et al. Engineering cold stress tolerance in crop plants[J]. Current Genomics, 2011,12(1):30-43.
URL pmid: 21886453 |
[58] | Guo H, Wu T, Li S, et al. The methylation patterns and transcriptional responses to chilling stress at the seedling stage in rice[J]. International Journal of Molecular Sciences, 2019,20(20):5089. |
[59] | Kumar G, Rattan UK, Singh AK. Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple(Malus x domestica Borkh. )[J]. PLoS One, 2016,11(2):e149934. |
[60] |
Song Y, Liu L, Li G, et al. Trichostatin A and 5-aza-2’-deoxycytidine influence the expression of cold-induced genes in Arabidopsis[J]. Plant Signal Behav, 2017,12(11):e1389828.
doi: 10.1080/15592324.2017.1389828 URL pmid: 29027833 |
[61] |
Chan Z, Wang Y, Cao M, et al. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway[J]. New Phytol, 2016,209(4):1527-1539.
doi: 10.1111/nph.13727 URL pmid: 26522658 |
[62] |
Zhu C, Zhang S, Zhou C, et al. Genome-wide investigation and transcriptional analysis of cytosine-5 DNA methyltransferase and DNA demethylase gene families in tea plant(Camellia sinensis)under abiotic stress and withering processing[J]. PeerJ, 2020,8:e8432.
doi: 10.7717/peerj.8432 URL pmid: 31976183 |
[63] |
Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017,22(1):53-65.
doi: 10.1016/j.tplants.2016.08.015 URL pmid: 27666516 |
[64] |
Qian Y, Hu W, Liao J, et al. The Dynamics of DNA methylation in the maize(Zea mays L.)inbred line B73 response to heat stress at the seedling stage[J]. Biochemical and Biophysical Research Communications, 2019,512(4):742-749.
doi: 10.1016/j.bbrc.2019.03.150 URL pmid: 30926168 |
[65] |
Sanchez DH, Paszkowski J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene[J]. PLoS Genet, 2014,10(11):e1004806.
doi: 10.1371/journal.pgen.1004806 URL pmid: 25411840 |
[66] |
Naydenov M, Baev V, Apostolova E, et al. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis[J]. Plant Physiology and Biochemistry, 2015,87:102-108.
doi: 10.1016/j.plaphy.2014.12.022 URL pmid: 25576840 |
[67] | Fan S, Liu H, Liu J, et al. Systematic analysis of the DNA methylase and demethylase gene families in rapeseed(Brassica napus L.)and their expression variations after salt and heat stresses[J]. International Journal of Molecular Sciences, 2020,21(3):953. |
[68] |
Chang YN, Zhu C, Jiang J, et al. Epigenetic regulation in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2019.
URL pmid: 32970364 |
[69] |
Yong-Villalobos L, González-Morales SI, Wrobel K, et al. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(52):E7293-E7302.
URL pmid: 26668375 |
[70] |
Kou HP, Li Y, Song XX, et al. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice(Oryza sativa L.)[J]. Journal of Plant Physiology, 2011,168(14):1685-1693.
doi: 10.1016/j.jplph.2011.03.017 URL pmid: 21665325 |
[71] |
Chen X, Schoenberger B, Menz J, et al. Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots[J]. Plant and Cell Physiology, 2018,59(9):1790-1802.
doi: 10.1093/pcp/pcy100 URL pmid: 29800330 |
[72] |
Huang X, Chao D, Koprivova A, et al. Nuclear localised MORE SULPHUR ACCUMULATION1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana[J]. PLoS Genetics, 2016,12(9):e1006298.
doi: 10.1371/journal.pgen.1006298 URL pmid: 27622452 |
[73] |
Kim J, Lim JY, Shin H, et al. ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression[J]. Plant Physiology, 2019,179(4):1810-1821.
URL pmid: 30692220 |
[74] |
Shi D, Zhuang K, Xia Y, et al. Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress[J]. Aquatic Toxicology, 2017,193:97-104.
URL pmid: 29053963 |
[75] | Shafiq S, Zeb Q, Ali A, et al. Lead, cadmium and zinc phytotoxicity alter DNA methylation levels to confer heavy metal tolerance in wheat[J]. International Journal of Molecular Sciences, 2019,20(19):4676. |
[76] |
Sudan J, Raina M, Singh R. Plant epigenetic mechanisms:role in abiotic stress and their generational heritability[J]. 3 Biotech, 2018,8(3):172.
doi: 10.1007/s13205-018-1202-6 URL pmid: 29556426 |
[77] | Feng QZ, Yang CW, Lin XY, et al. Salt and alkaline stress induced transgenerational alteration in DNA methylation of rice(Oryza sativa)[J]. Australian Journal of Crop Science, 2012,6(5):877-883. |
[78] |
Molinier J, Ries G, Zipfel C, et al. Transgeneration memory of stress in plants[J]. Nature, 2006,442(7106):1046-1049.
URL pmid: 16892047 |
[79] |
Cong W, Miao Y, Xu L, et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice(Oryza sativa L.)[J]. BMC Plant Biology, 2019,19(1):282.
doi: 10.1186/s12870-019-1887-7 URL pmid: 31248374 |
[80] |
Verhoeven KJ, Jansen JJ, van Dijk PJ, et al. Stress-induced DNA methylation changes and their heritability in asexual dandelions[J]. New Phytol, 2010,185(4):1108-1118.
doi: 10.1111/j.1469-8137.2009.03121.x URL pmid: 20003072 |
[1] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[2] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[3] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[4] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[5] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[8] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[9] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[10] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[11] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[12] | 刘媛媛, 魏传正, 谢永波, 仝宗军, 韩星, 甘炳成, 谢宝贵, 严俊杰. 金针菇II类过氧化物酶基因在子实体发育与胁迫应答过程的表达特征[J]. 生物技术通报, 2023, 39(11): 340-349. |
[13] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[14] | 李建建, 贺宸靖, 黄小平, 向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(1): 48-58. |
[15] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||