生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 53-64.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0088
收稿日期:2025-01-20
出版日期:2025-08-26
发布日期:2025-06-20
通讯作者:
王亮,男,博士,副教授,研究方向 :衣藻细胞分子生物学;E-mail: wangliang@jsnu.edu.cn作者简介:李亚,男,硕士研究生,研究方向 :衣藻生物修复;E-mail: 13023515097@163.com
基金资助:
LI Ya(
), JIANG Lin, XU Chuang, WANG Su-hui, MA Zhao, WANG Liang(
)
Received:2025-01-20
Published:2025-08-26
Online:2025-06-20
摘要:
随着城市化和工业化的快速发展,重金属污染对水生生态系统造成不可估量的威胁,并可通过食物链富集效应严重威胁人类生命健康,已然成为全球性关注的环境问题。在此背景下,以生物修复技术为代表的绿色环境治理方案因其环境友好性和可持续发展性而备受关注。藻类作为水生生态系统中的重要初级生产者,具有高度多样性和生态适应性,并通过多种分子机制响应重金属胁迫。莱茵衣藻(Chlamydomonas reinhardtii)是一种单细胞的真核微藻,通过多层次的生理结构和调控机制维持细胞内部金属离子稳态,在金属的生物转化与生物吸附方面显示出独特能力,已成为重金属污染水体修复研究的重要模式生物。莱茵衣藻细胞金属稳态机制研究的不断深入和现代生物技术的快速发展,为深入理解莱茵衣藻应对重金属胁迫防御机制提供了理论依据,也为利用莱茵衣藻进行重金属污染水体的生物修复提供科学指导。本文将从细胞表面(如细胞壁、细胞外聚合物)至细胞内部(如金属转运蛋白、重金属结合因子、维持金属稳态相关细胞器)等多层面,综述莱茵衣藻响应重金属胁迫的关键组分与调控机制,并结合现代分子生物学技术用于改造莱茵衣藻重金属生物修复能力的研究,探讨其在水环境保护领域的应用潜力。
李亚, 蒋林, 徐闯, 王苏慧, 马曌, 王亮. 莱茵衣藻响应重金属胁迫的分子防御机制研究进展[J]. 生物技术通报, 2025, 41(8): 53-64.
LI Ya, JIANG Lin, XU Chuang, WANG Su-hui, MA Zhao, WANG Liang. Research Progress in Molecular Defense Mechanisms of Chlamydomonas reinhardtii in Response to Heavy Metal Stress[J]. Biotechnology Bulletin, 2025, 41(8): 53-64.
图1 莱茵衣藻重金属代谢及吸附机制模式图A:胞外生物吸附,包括离子交换、吸附和沉降等;B:胞内生物积累,包括隔离、转化等
Fig. 1 Schematic diagram of heavy metal metabolism and biosorption mechanisms in C. reinhardtiiA: Extracellular biosorption, including ion exchange, adsorption, and precipitation. B: Intracellular bioaccumulation, including sequestration, and transformation
重金属种类 Heavy metal | 胁迫影响 Stress effect | 响应机制 Response mechanism | 参考文献 Reference |
|---|---|---|---|
| Cu | 生长抑制 细胞形态变大 细胞聚集 叶绿体结构损伤,类囊体膜解体 酸钙体、淀粉粒、质体小球积累 叶绿素含量下降 产生过量活性氧 细胞内铜离子分布失衡 | 铜转运蛋白的表达增强 EPS螯合 抗氧化系统激活 生物隔离 重金属螯合肽含量提高 生物转化 | [ |
| Zn | 生长抑制 细胞外聚合物含量提升 叶绿素含量下降 促进Cu的吸收并产生复合毒性 降低淀粉含量 | 细胞壁吸附 EPS螯合 重金属螯合肽含量提高 抗氧化系统激活 | [ |
| Fe | 脂质产生增加 PSI和PSII反应中心的蛋白质含量降低 TAG生物合成增加 光合电子传递速率降低 产生过量活性氧 | 抗氧化系统激活 铁蛋白表达上调 | [ |
| Mn | 生长抑制 PSII功能受损 Mn-SOD活性降低 氧化应激敏感性增加 次生营养缺乏 | 锰转运蛋白的表达增强 抗氧化系统激活 磷酸盐转运系统调整 | [ |
| Hg | 生长抑制 叶绿素含量下降 脂质过氧化物 TBARS增加 活性氧增加 | 抗氧化系统激活 重金属螯合肽含量提高 | [ |
| Pb | 生长抑制 叶绿素含量下降 产生过量活性氧 呈现出质壁分离现象 淀粉颗粒和脂滴的原生质体收缩程度加剧 | 抗氧化系统激活 EPS螯合 | [ |
| As | 生长抑制 活性氧增加 抑制谷胱甘肽转移酶活性 降低核糖体活性 叶绿素含量下降 | EPS螯合 抗氧化系统激活 淀粉积累 细胞磷积累 | [ |
| Cr | 生长抑制 活性氧增加 脂质过氧化 | 抗氧化系统激活 光保护机制 酸钙体产生 | [ |
| Cd | 生长抑制 细胞聚集 质壁分离 淀粉颗粒和脂滴的原生质体收缩程度加剧 形成镉聚集体 细胞形态变大 液泡数量和体积增加 电子致密颗粒积累 | 重金属结合因子激活 生物隔离 EPS螯合 细胞壁吸附 | [ |
表1 莱茵衣藻在不同重金属胁迫下的生理影响与响应机制
Table 1 Physiological effects and response mechanisms of C. reinhardtii under different heavy metal stresses
重金属种类 Heavy metal | 胁迫影响 Stress effect | 响应机制 Response mechanism | 参考文献 Reference |
|---|---|---|---|
| Cu | 生长抑制 细胞形态变大 细胞聚集 叶绿体结构损伤,类囊体膜解体 酸钙体、淀粉粒、质体小球积累 叶绿素含量下降 产生过量活性氧 细胞内铜离子分布失衡 | 铜转运蛋白的表达增强 EPS螯合 抗氧化系统激活 生物隔离 重金属螯合肽含量提高 生物转化 | [ |
| Zn | 生长抑制 细胞外聚合物含量提升 叶绿素含量下降 促进Cu的吸收并产生复合毒性 降低淀粉含量 | 细胞壁吸附 EPS螯合 重金属螯合肽含量提高 抗氧化系统激活 | [ |
| Fe | 脂质产生增加 PSI和PSII反应中心的蛋白质含量降低 TAG生物合成增加 光合电子传递速率降低 产生过量活性氧 | 抗氧化系统激活 铁蛋白表达上调 | [ |
| Mn | 生长抑制 PSII功能受损 Mn-SOD活性降低 氧化应激敏感性增加 次生营养缺乏 | 锰转运蛋白的表达增强 抗氧化系统激活 磷酸盐转运系统调整 | [ |
| Hg | 生长抑制 叶绿素含量下降 脂质过氧化物 TBARS增加 活性氧增加 | 抗氧化系统激活 重金属螯合肽含量提高 | [ |
| Pb | 生长抑制 叶绿素含量下降 产生过量活性氧 呈现出质壁分离现象 淀粉颗粒和脂滴的原生质体收缩程度加剧 | 抗氧化系统激活 EPS螯合 | [ |
| As | 生长抑制 活性氧增加 抑制谷胱甘肽转移酶活性 降低核糖体活性 叶绿素含量下降 | EPS螯合 抗氧化系统激活 淀粉积累 细胞磷积累 | [ |
| Cr | 生长抑制 活性氧增加 脂质过氧化 | 抗氧化系统激活 光保护机制 酸钙体产生 | [ |
| Cd | 生长抑制 细胞聚集 质壁分离 淀粉颗粒和脂滴的原生质体收缩程度加剧 形成镉聚集体 细胞形态变大 液泡数量和体积增加 电子致密颗粒积累 | 重金属结合因子激活 生物隔离 EPS螯合 细胞壁吸附 | [ |
| [1] | Choi SB, Yun YS. Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms [J]. J Hazard Mater, 2006, 138(2): 378-383. |
| [2] | Pluciński B, Nowicka B, Waloszek A, et al. The role of antioxidant response and nonphotochemical quenching of chlorophyll fluorescence in long-term adaptation to Cu-induced stress in Chlamydomonas reinhardtii [J]. Environ Sci Pollut Res Int, 2023, 30(25): 67250-67262. |
| [3] | Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport [J]. Biochim Biophys Acta, 2012, 1823(9): 1531-1552. |
| [4] | Merchant SS, Prochnik SE, Vallon O, et al. The chlamydomonas genome reveals the evolution of key animal and plant functions [J]. Science, 2007, 318(5848): 245-251. |
| [5] | Balzano S, Sardo A, Blasio M, et al. Microalgal metallothioneins and phytochelatins and their potential use in bioremediation [J]. Front Microbiol, 2020, 11: 517. |
| [6] | Tang YX, Zhang BL, Li ZY, et al. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii [J]. Biotechnol Bioeng, 2023, 120(5): 1334-1345. |
| [7] | Li Y, Jiang L, Xu C, et al. Insertional mutagenesis of AIDA or CYP720B1 in the green alga Chlamydomonas reinhardtii confers copper(II) tolerance and increased biomass [J]. J Hazard Mater, 2025, 486: 137026. |
| [8] | Samadani M, Perreault F, Oukarroum A, et al. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121 [J]. Chemosphere, 2018, 191: 174-182. |
| [9] | Zhang BL, Tang YX, Yu F, et al. Translatomics and physiological analyses of the detoxification mechanism of green Alga Chlamydomonas reinhardtii to cadmium toxicity [J]. J Hazard Mater, 2023, 448: 130990. |
| [10] | MacFie SM, Welbourn PM. The cell wall as a barrier to uptake of metal ions in the unicellular green Alga Chlamydomonas reinhardtii (Chlorophyceae) [J]. Arch Environ Contam Toxicol, 2000, 39(4): 413-419. |
| [11] | Naveed S, Yu QN, Szewczuk-Karpisz K, et al. Roles of extracellular polymeric substances in arsenic accumulation and detoxification by cell wall intact and mutant strains of Chlamydomonas reinhardtii [J]. J Environ Sci, 2025, 152: 142-154. |
| [12] | Tüzün İ, Bayramoğlu G, Yalçın E, et al. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii [J]. J Environ Manag, 2005, 77(2): 85-92. |
| [13] | Zhou Y, Cui XC, Wu BB, et al. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction [J]. Bioresour Technol, 2024, 406: 131054. |
| [14] | Xie QT, Liu N, Lin DH, et al. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris [J]. Environ Pollut, 2020, 263: 114102. |
| [15] | Li CH, Li PH, Fu HX, et al. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances [J]. Sci Total Environ, 2023, 871: 161995. |
| [16] | Li CH, Li PH, Fu HX, et al. Dynamic responses and adsorption mechanisms of Chlamydomonas reinhardtii extracellular polymeric substances under Cd, Cu, Pb, and Zn exposure [J]. Environ Pollut, 2025, 368: 125747. |
| [17] | Pang CX, Chai J, Zhu P, et al. Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters [J]. Nat Commun, 2023, 14(1): 3404. |
| [18] | Fontaine SL, Quinn JM, Nakamoto SS, et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2002, 1(5): 736-757. |
| [19] | Castruita M, Casero D, Karpowicz SJ, et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps [J]. Plant Cell, 2011, 23(4): 1273-1292. |
| [20] | Cellier MFM, Bergevin I, Boyer E, et al. Polyphyletic origins of bacterial nramp transporters [J]. Trends Genet, 2001, 17(7): 365-370. |
| [21] | MacDiarmid CW, Milanick MA, Eide DJ. Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock [J]. J Biol Chem, 2003, 278(17): 15065-15072. |
| [22] | Suzuki M, Gitlin JD. Intracellular localization of the Menkes and Wilson’s disease proteins and their role in intracellular copper transport [J]. Pediatr Int, 1999, 41(4): 436-442. |
| [23] | Schaaf G, Honsbein A, Meda AR, et al. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots [J]. J Biol Chem, 2006, 281(35): 25532-25540. |
| [24] | Yagisawa F, Nishida K, Yoshida M, et al. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae [J]. Plant J, 2009, 60(5): 882-893. |
| [25] | Caccamo A, Vega de Luna F, Wahni K, et al. Ascorbate peroxidase 2 (APX2) of Chlamydomonas binds copper and modulates the copper insertion into plastocyanin [J]. Antioxidants, 2023, 12(11): 1946. |
| [26] | Puig S, Lee J, Lau M, et al. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake [J]. J Biol Chem, 2002, 277(29): 26021-26030. |
| [27] | Page MD, Kropat J, Hamel PP, et al. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation [J]. Plant Cell, 2009, 21(3): 928-943. |
| [28] | Merchant SS, Schmollinger S, Strenkert D, et al. From economy to luxury: Copper homeostasis in Chlamydomonas and other algae [J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(11): 118822. |
| [29] | González-Guerrero M, Argüello JM. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites [J]. Proc Natl Acad Sci USA, 2008, 105(16): 5992-5997. |
| [30] | Williams LE, Mills RF. P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants [J]. Trends Plant Sci, 2005, 10(10): 491-502. |
| [31] | Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, et al. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts [J]. Plant Cell, 2005, 17(4): 1233-1251. |
| [32] | Strenkert D, Schmollinger S, Hu YT, et al. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine [J]. Metallomics, 2023, 15(7): mfad043. |
| [33] | Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation [J]. Biometals, 2001, 14(3/4): 251-270. |
| [34] | Hanikenne M, Krämer U, Demoulin V, et al. A comparative inventory of metal transporters in the green alga and the red alga [J]. Plant Physiol, 2005, 137(2): 428-446. |
| [35] | Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport [J]. Sci Rep, 2012, 2: 286. |
| [36] | Chang P, Yin H, Imanaka T, et al. The metal transporter CrNRAMP1 is involved in zinc and cobalt transports in Chlamydomonas reinhardtii [J]. Biochem Biophys Res Commun, 2020, 523(4): 880-886. |
| [37] | Allen MD, del Campo JA, Kropat J, et al. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2007, 6(10): 1841-1852. |
| [38] | Urzica EI, Casero D, Yamasaki H, et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage [J]. Plant Cell, 2012, 24(10): 3921-3948. |
| [39] | Chen JC, Hsieh SI, Kropat J, et al. A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas [J]. Eukaryot Cell, 2008, 7(3): 541-545. |
| [40] | Allen MD, Kropat J, Tottey S, et al. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency [J]. Plant Physiol, 2007, 143(1): 263-277. |
| [41] | Tsednee M, Castruita M, Salomé PA, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions [J]. J Biol Chem, 2019, 294(46): 17626-17641. |
| [42] | Luk E, Carroll M, Baker M, et al. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family [J]. Proc Natl Acad Sci USA, 2003, 100(18): 10353-10357. |
| [43] | Su Z, Chai MF, Lu PL, et al. AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis [J]. Planta, 2007, 226(4): 1031-1039. |
| [44] | Thiriet-Rupert S, Gain G, Jadoul A, et al. Long-term acclimation to cadmium exposure reveals extensive phenotypic plasticity in Chlamydomonas [J]. Plant Physiol, 2021, 187(3): 1653-1678. |
| [45] | Tao LY, Wang L, Liu LH, et al. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii [J]. J Hazard Mater, 2024, 478: 135460. |
| [46] | Xi YM, Han BL, Kong FT, et al. Enhancement of arsenic uptake and accumulation in green microalga Chlamydomonas reinhardtii through heterologous expression of the phosphate transporter DsPht1 [J]. J Hazard Mater, 2023, 459: 132130. |
| [47] | Chen ZZ, Zhu L, Wilkinson KJ. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper [J]. Environ Sci Technol, 2010, 44(9): 3580-3586. |
| [48] | Sánchez-Marín P, Fortin C, Campbell PGC. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii [J]. Biometals, 2014, 27(1): 173-181. |
| [49] | Bräutigam A, Schaumlöffel D, Preud’homme H, et al. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii [J]. Plant Cell Environ, 2011, 34(12): 2071-2082. |
| [50] | Kobayashi I, Fujiwara S, Saegusa H, et al. Relief of arsenate toxicity by Cd-stimulated phytochelatin synthesis in the green alga Chlamydomonas reinhardtii [J]. Mar Biotechnol, 2006, 8(1): 94-101. |
| [51] | Xiao XF, Li WF, Jin M, et al. Responses and tolerance mechanisms of microalgae to heavy metal stress: a review [J]. Mar Environ Res, 2023, 183: 105805. |
| [52] | Nagel K, Adelmeier U, Voigt J. Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii [J]. J Plant Physiol, 1996, 149(1-2): 86-90. |
| [53] | Kiran Marella T, Saxena A, Tiwari A. Diatom mediated heavy metal remediation: a review [J]. Bioresour Technol, 2020, 305: 123068. |
| [54] | Dayer R, Fischer BB, Eggen RIL, et al. The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii [J]. Genetics, 2008, 179(1): 41-57. |
| [55] | Romano RL, Liria CW, Machini MT, et al. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum [J]. J Appl Phycol, 2017, 29(2): 811-820. |
| [56] | Tsuji N, Hirayanagi N, Iwabe O, et al. Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga, Dunaliella tertiolecta [J]. Phytochemistry, 2003, 62(3): 453-459. |
| [57] | Delevoye C, Marks MS, Raposo G. Lysosome-related organelles as functional adaptations of the endolysosomal system [J]. Curr Opin Cell Biol, 2019, 59: 147-158. |
| [58] | Docampo R, Huang GZ. Acidocalcisomes of eukaryotes [J]. Curr Opin Cell Biol, 2016, 41: 66-72. |
| [59] | Blaby-Haas CE, Merchant SS. Lysosome-related organelles as mediators of metal homeostasis [J]. J Biol Chem, 2014, 289(41): 28129-28136. |
| [60] | Long H, Fang JH, Ye L, et al. Structural and functional regulation of Chlamydomonas lysosome-related organelles during environmental changes [J]. Plant Physiol, 2023, 192(2): 927-944. |
| [61] | Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes [J]. Microbiol Mol Biol Rev, 2024, 88(1): e0004223. |
| [62] | Schmollinger S, Chen S, Strenkert D, et al. Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles [J]. Proc Natl Acad Sci USA, 2021, 118(16): e2026811118. |
| [63] | Klompmaker SH, Kohl K, Fasel N, et al. Magnesium uptake by connecting fluid-phase endocytosis to an intracellular inorganic cation filter [J]. Nat Commun, 2017, 8(1): 1879. |
| [64] | Deng SX, Wang WX. Dynamic regulation of intracellular labile Cu(I)/Cu(II) cycle in microalgae Chlamydomonas reinhardtii: disrupting the balance by Cu stress [J]. Environ Sci Technol, 2024, 58(12): 5255-5266. |
| [65] | Zhan D, Liu Y, Yu N, et al. Photosynthetic response of Chlamydomonas reinhardtii and Chlamydomonas sp. 1710 to zinc toxicity [J]. Front Microbiol, 2024, 15: 1383360. |
| [66] | Ye ML, Fang S, Yu QN, et al. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations [J]. Sci Total Environ, 2023, 905: 167122. |
| [67] | Devadasu E, Subramanyam R. Enhanced lipid production in Chlamydomonas reinhardtii caused by severe iron deficiency [J]. Front Plant Sci, 2021, 12: 615577. |
| [68] | Devadasu E, Chinthapalli DK, Chouhan NS, et al. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency [J]. Photosynth Res, 2019, 139(1-3): 253-266. |
| [69] | Höhner R, Barth J, Magneschi L, et al. The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics [J]. Mol Cell Proteom, 2013, 12(10): 2774-2790. |
| [70] | Page MD, Allen MD, Kropat J, et al. Fe sparing and Fe recycling contribute to increased superoxide dismutase capacity in iron-starved Chlamydomonas reinhardtii [J]. Plant Cell, 2012, 24(6): 2649-2665. |
| [71] | Elbaz A, Wei YY, Meng Q, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii [J]. Ecotoxicology, 2010, 19(7): 1285-1293. |
| [72] | Howe G, Merchant S. Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii [J]. Plant Physiol, 1992, 98(1): 127-136. |
| [73] | Zheng CQ, Aslam M, Liu XJ, et al. Impact of Pb on Chlamydomonas reinhardtii at physiological and transcriptional levels [J]. Front Microbiol, 2020, 11: 1443. |
| [74] | Li CH, Zheng C, Fu HX, et al. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress [J]. Chemosphere, 2021, 274: 129771. |
| [75] | Dong YM, Gao ML, Qiu WW, et al. Effects of microplastic on arsenic accumulation in Chlamydomonas reinhardtii in a freshwater environment [J]. J Hazard Mater, 2021, 405: 124232. |
| [76] | Jiang ZQ, Sun YT, Guan HZ, et al. Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii [J]. Ecotoxicol Environ Saf, 2022, 229: 113091. |
| [77] | Nowicka B, Fesenko T, Walczak J, et al. The inhibitor-evoked shortage of tocopherol and plastoquinol is compensated by other antioxidant mechanisms in Chlamydomonas reinhardtii exposed to toxic concentrations of cadmium and chromium ions [J]. Ecotoxicol Environ Saf, 2020, 191: 110241. |
| [78] | Cheloni G, Slaveykova VI. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress [J]. Aquat Toxicol, 2021, 231: 105711. |
| [79] | Wang L, Yang LJ, Wen X, et al. Rapid and high efficiency transformation of Chlamydomonas reinhardtii by square-wave electroporation [J]. Biosci Rep, 2019, 39(1): BSR20181210. |
| [80] | Ibuot A, Dean AP, McIntosh OA, et al. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains [J]. Algal Res, 2017, 24: 89-96. |
| [81] | Ibuot A, Webster RE, Williams LE, et al. Increased metal tolerance and bioaccumulation of zinc and cadmium in Chlamydomonas reinhardtii expressing a AtHMA4 C-terminal domain protein [J]. Biotechnol Bioeng, 2020, 117(10): 2996-3005. |
| [82] | Chokshi K, Kavanagh K, Khan I, et al. Surface displayed MerR increases mercury accumulation by green microalga Chlamydomonas reinhardtii [J]. Environ Int, 2024, 189: 108813. |
| [83] | Liao TC, Ye L, Lin YW, et al. Surface display and application of cadmium-binding protein CADR on the cell wall of Chlamydomonas reinhardtii [J]. Chin J Biotechnol, 2024, 40(10): 3689-3704. |
| [84] | Chen H, Yang QL, Xu JX, et al. Efficient methods for multiple types of precise gene-editing in Chlamydomonas [J]. Plant J, 2023, 115(3): 846-865. |
| [85] | Battarra C, Angstenberger M, Bassi R, et al. Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii [J]. Biol Direct, 2024, 19(1): 108. |
| [86] | Nievergelt AP, Diener DR, Bogdanova A, et al. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas [J]. Cell Rep Meth, 2023, 3(8): 100562. |
| [87] | Nievergelt AP, Diener DR, Bogdanova A, et al. Protocol for precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas [J]. STAR Protoc, 2024, 5(1): 102774. |
| [88] | Kao PH, Ng IS. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii [J]. Bioresour Technol, 2017, 245: 1527-1537. |
| [89] | El-Sheekh MM, Galal HR, Mousa ASH, et al. Coupling wastewater treatment, biomass, lipids, and biodiesel production of some green microalgae [J]. Environ Sci Pollut Res Int, 2023, 30(12): 35492-35504. |
| [1] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
| [2] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
| [3] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
| [4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
| [5] | 李旺宁, 张豪杰, 李亚男, 梁梦静, 季春丽, 张春辉, 李润植, 崔玉琳, 秦松, 崔红利. 莱茵衣藻蓝光受体植物类型隐花色素CRY突变体的表型鉴定[J]. 生物技术通报, 2023, 39(2): 243-253. |
| [6] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
| [7] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
| [8] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
| [9] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
| [10] | 陈璇, 刘祥龙, 唐婷. 苔藓植物响应重金属胁迫的研究进展[J]. 生物技术通报, 2020, 36(10): 191-199. |
| [11] | 吉米拉木·加马力, 美合日班·阿不力米提, 古海尼沙·买买提, 艾尼瓦尔·吐米尔. 两种地衣共生藻对铜和锌的耐受性及吸附特性研究[J]. 生物技术通报, 2019, 35(6): 69-75. |
| [12] | 宋燕子, 贾彬, 林柏成, 胡章立, 黄瑛. 莱茵衣藻酰基辅酶A合成酶cDNA克隆及其酵母表达[J]. 生物技术通报, 2015, 31(9): 119-124. |
| [13] | 陈利红, 李丽丽, 高利芬, 周俊飞, 李甜甜, 彭海. 莱茵衣藻BBS1基因RNAi载体的构建及应用[J]. 生物技术通报, 2015, 31(7): 109-114. |
| [14] | 王潮岗, 陈爱娜, 胡章立, 于珊珊. 莱茵衣藻基因组文库的构建 [J]. 生物技术通报, 2013, 0(4): 85-89. |
| [15] | 牛丽红;耿丽丽;张蕊;孙长坡;张杰;. 莱茵衣藻ω-3脂肪酸脱氢酶基因在毕赤酵母中的表达与活性分析[J]. , 2011, 0(12): 96-101. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||