生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 212-222.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0896
收稿日期:
2023-09-18
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
刘超超,男,博士,副研究员,研究方向:设施蔬菜安全生产与品质调控;E-mail: ccliu@just.edu.cn作者简介:
赵曜,男,硕士研究生,研究方向:农业资源开发与利用;E-mail: 211211801121@stu.just.edu.cn
基金资助:
ZHAO Yao(), WEN Lang, LUO Shao-dan, LI Zi-xing, LIU Chao-chao()
Received:
2023-09-18
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】Heavy metal ATPase(HMA)基因家族广泛参与植物对金属元素的吸收和转运,系统鉴定番茄HMA基因家族成员及其特征,并研究其在应对镉胁迫过程中的功能,为解析番茄重金属转运机制及番茄低镉积累种质创新提供理论依据。【方法】通过生物信息学鉴定番茄HMA基因家族成员,并分析其系统进化树、蛋白理化性质、基因结构、顺式作用元件、基因表达模式等,通过酵母功能互补试验研究SlHMA1的镉转运活性。【结果】番茄基因组中存在8个SlHMAs,分属2个亚组。在基因结构方面,各SlHMAs间及与拟南芥和水稻的同源基因之间都存在显著差异。SlHMAs成员启动子区域含有较多逆境响应相关的顺式作用元件,RT-qPCR结果也揭示大多数SlHMAs表达对镉胁迫有不同程度的组织特异性响应。酵母功能互补试验表明SlHMA1蛋白具有镉转运活性,进化分析表明HMA1广泛存在于植物界,且其ATP水解酶活性相关的氨基酸保守基序DKTGT也在植物界高度保守。【结论】番茄SlHMAs具有HMA家族基因的典型特征,同时也存在功能多样性。SlHMAs及其氨基酸保守基序DKTGT与金属离子转运及镉胁迫响应密切相关,在低镉作物育种方面具有重要应用潜力。
赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222.
ZHAO Yao, WEN Lang, LUO Shao-dan, LI Zi-xing, LIU Chao-chao. Identification of HMA Gene Family and Cadmium Transport Function of SlHMA1 in Tomato[J]. Biotechnology Bulletin, 2024, 40(2): 212-222.
基因Gene | 正向引物Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
SlHMA1 | CAGGAGGCCTTATAATGGTAGG | TAGTACATCAGCAACAGCTACC |
SlHMA3 | GTGTTCTGACTCAACAGACAAC | TTTCCACATGTCATTGAGCTTG |
SlHMA4 | GATGGCGTCGTTATTAATGGTC | ACAGTTCCACCAATGACCTTAT |
SlHMA5.1 | ATTCATCATTGGACGACGTTTC | AGCTGGTTCTTAACACCGAATA |
SlHMA5.2 | GCTTATGGATTTAGCCCCAAAG | TCGTTCTTTTGTATCAATCGGC |
SlHMA6 | TAGTCAGTGGAGATTTAGGGGA | CAATGATCTGATCTCCGACTGA |
SlHMA7 | CTGCAGAATACGTGTTGATGAG | GGGATGGAAATCACATTGTACG |
SlHMA8 | ATTCTCTCTCTCACACGATCAC | CAATAGCTGACTAGTACGACGT |
SlActin | CCATTCTCCGTCTTGACTTGG | TCTTTCCTAATATCCACGTCAC |
表1 RT-qPCR引物序列
Table 1 Primers used for RT-qPCR
基因Gene | 正向引物Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
SlHMA1 | CAGGAGGCCTTATAATGGTAGG | TAGTACATCAGCAACAGCTACC |
SlHMA3 | GTGTTCTGACTCAACAGACAAC | TTTCCACATGTCATTGAGCTTG |
SlHMA4 | GATGGCGTCGTTATTAATGGTC | ACAGTTCCACCAATGACCTTAT |
SlHMA5.1 | ATTCATCATTGGACGACGTTTC | AGCTGGTTCTTAACACCGAATA |
SlHMA5.2 | GCTTATGGATTTAGCCCCAAAG | TCGTTCTTTTGTATCAATCGGC |
SlHMA6 | TAGTCAGTGGAGATTTAGGGGA | CAATGATCTGATCTCCGACTGA |
SlHMA7 | CTGCAGAATACGTGTTGATGAG | GGGATGGAAATCACATTGTACG |
SlHMA8 | ATTCTCTCTCTCACACGATCAC | CAATAGCTGACTAGTACGACGT |
SlActin | CCATTCTCCGTCTTGACTTGG | TCTTTCCTAATATCCACGTCAC |
基因ID Gene ID | 基因名称 Gene name | 氨基酸数目 No. of amino acid | 分子量 Molecular weight/kD | 等电点 pI | 稳定性 Instability index | 脂肪系数 Aliphatic index | 亲水性 GRAVY | 亚细胞定位 Subcellular localization | 跨膜结构域 TM |
---|---|---|---|---|---|---|---|---|---|
Solyc02g092920.2 | SlHMA1 | 821 | 89.08 | 8.44 | 34.91 | 100.4 | 0.13 | 叶绿体 Chloroplast | 0 |
Solyc07g009130.2 | SlHMA3 | 1 302 | 140.44 | 6.94 | 45.63 | 80.46 | -0.231 | 细胞质膜 Plasma membrane | 8 |
Solyc11g062100.1 | SlHMA4 | 698 | 76.04 | 5.68 | 36.13 | 104.44 | 0.227 | 细胞质膜 Plasma membrane | 7 |
Solyc08g080870.2 | SlHMA5.1 | 954 | 103.58 | 5.58 | 39.69 | 102.69 | 0.139 | 细胞质膜 Plasma membrane | 6 |
Solyc08g080890.2 | SlHMA5.2 | 890 | 96.58 | 5.80 | 32.38 | 103.96 | 0.200 | 细胞质膜 Plasma membrane | 8 |
Solyc01g105160.4 | SlHMA6 | 964 | 101.94 | 8.30 | 33.79 | 97.68 | 0.092 | 叶绿体 Chloroplast | 0 |
Solyc02g068490.3 | SlHMA7 | 1 015 | 108.59 | 5.16 | 30.72 | 106.97 | 0.324 | 细胞质膜 Plasma membrane | 10 |
Solyc08g061610.2 | SlHMA8 | 894 | 95.20 | 5.94 | 38.01 | 103.66 | 0.118 | 叶绿体 Chloroplast | 0 |
表2 SlHMAs蛋白理化性质分析
Table 2 Physicochemical properties of SlHMAs protein
基因ID Gene ID | 基因名称 Gene name | 氨基酸数目 No. of amino acid | 分子量 Molecular weight/kD | 等电点 pI | 稳定性 Instability index | 脂肪系数 Aliphatic index | 亲水性 GRAVY | 亚细胞定位 Subcellular localization | 跨膜结构域 TM |
---|---|---|---|---|---|---|---|---|---|
Solyc02g092920.2 | SlHMA1 | 821 | 89.08 | 8.44 | 34.91 | 100.4 | 0.13 | 叶绿体 Chloroplast | 0 |
Solyc07g009130.2 | SlHMA3 | 1 302 | 140.44 | 6.94 | 45.63 | 80.46 | -0.231 | 细胞质膜 Plasma membrane | 8 |
Solyc11g062100.1 | SlHMA4 | 698 | 76.04 | 5.68 | 36.13 | 104.44 | 0.227 | 细胞质膜 Plasma membrane | 7 |
Solyc08g080870.2 | SlHMA5.1 | 954 | 103.58 | 5.58 | 39.69 | 102.69 | 0.139 | 细胞质膜 Plasma membrane | 6 |
Solyc08g080890.2 | SlHMA5.2 | 890 | 96.58 | 5.80 | 32.38 | 103.96 | 0.200 | 细胞质膜 Plasma membrane | 8 |
Solyc01g105160.4 | SlHMA6 | 964 | 101.94 | 8.30 | 33.79 | 97.68 | 0.092 | 叶绿体 Chloroplast | 0 |
Solyc02g068490.3 | SlHMA7 | 1 015 | 108.59 | 5.16 | 30.72 | 106.97 | 0.324 | 细胞质膜 Plasma membrane | 10 |
Solyc08g061610.2 | SlHMA8 | 894 | 95.20 | 5.94 | 38.01 | 103.66 | 0.118 | 叶绿体 Chloroplast | 0 |
图6 镉胁迫下SlHMAs家族成员在番茄根系和叶片中的表达模式 不同小写字母表示差异显著(P < 0.05)。下同
Fig. 6 Gene expression pattern of SlHMAs in the root and leaf of tomato under cadmium stress The different letters indicate significant differences(P<0.05). The same below
[1] | 陈玉鹏, 梁东丽, 刘中华, 等. 大棚蔬菜土壤重金属污染及其控制的研究进展与展望[J]. 农业环境科学学报, 2018, 37(1): 9-17. |
Chen YP, Liang DL, Liu ZH, et al. Analysis of present situation and control of heavy metal pollution in vegetable greenhouse soils[J]. J Agro-Environ Sci, 2018, 37(1): 9-17. | |
[2] |
Hu WY, Huang B, Tian K, et al. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk[J]. Chemosphere, 2017, 167: 82-90.
doi: S0045-6535(16)31323-6 pmid: 27710846 |
[3] |
Sun JT, Pan LL, Li ZH, et al. Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity[J]. Environ Pollut, 2018, 243: 1509-1516.
doi: S0269-7491(18)32285-1 pmid: 30292159 |
[4] |
Tao JY, Lu LL. Advances in genes-encoding transporters for cadmium uptake, translocation, and accumulation in plants[J]. Toxics, 2022, 10(8): 411.
doi: 10.3390/toxics10080411 URL |
[5] |
Yang Z, Yang F, Liu JL, et al. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation[J]. Sci Total Environ, 2022, 809: 151099.
doi: 10.1016/j.scitotenv.2021.151099 URL |
[6] |
Feki K, Tounsi S, Mrabet M, et al. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants[J]. Environ Sci Pollut Res, 2021, 28(46): 64967-64986.
doi: 10.1007/s11356-021-16805-y |
[7] |
Ajeesh Krishna TP, Maharajan T, Victor Roch G, et al. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants[J]. Front Plant Sci, 2020, 11: 662.
doi: 10.3389/fpls.2020.00662 pmid: 32536933 |
[8] |
Fu S, Lu YS, Zhang X, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. J Exp Bot, 2019, 70(20): 5909-5918.
doi: 10.1093/jxb/erz335 pmid: 31328224 |
[9] |
Zhang J, Zhang M, Song HY, et al. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance[J]. Environ Exp Bot, 2020, 176: 104121.
doi: 10.1016/j.envexpbot.2020.104121 URL |
[10] | Naz M, Dai ZC, Tariq M, et al. CHAPTER16-Role of NRAMP transporters for Fe, mineral uptake, and accumulation in rice and other plants[M]//Aftab T, Hakeem K. Metals Metalloids Soil Plant Water Systems. Amsterdam: Elsevier, 2022: 331-348. |
[11] |
刘元峰, 李素贞, 郭晋杰, 等. 植物YSL家族基因研究进展[J]. 生物技术通报, 2017, 33(9): 1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0375 |
Liu YF, Li SZ, Guo JJ, et al. Research progress on YSL transporters gene family[J]. Biotechnol Bull, 2017, 33(9): 1-9. | |
[12] |
Das N, Bhattacharya S, Maiti MK. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation[J]. Plant Physiol Biochem, 2016, 105: 297-309.
doi: 10.1016/j.plaphy.2016.04.049 URL |
[13] |
Huang XY, Deng FL, Yamaji N, et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain[J]. Nat Commun, 2016, 7(1): 12138.
doi: 10.1038/ncomms12138 |
[14] |
Tang B, Luo MJ, Zhang YX, et al. Natural variations in the P-type ATPase heavy metal transporter gene ZmHMA3 control cadmium accumulation in maize grains[J]. J Exp Bot, 2021, 72(18): 6230-6246.
doi: 10.1093/jxb/erab254 pmid: 34235535 |
[15] |
Cobbett CS, Hussain D, Haydon MJ. Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis[J]. New Phytol, 2003, 159(2): 315-321.
doi: 10.1046/j.1469-8137.2003.00785.x URL |
[16] |
Argüello JM, Eren E, González-Guerrero M. The structure and function of heavy metal transport P1B-ATPases[J]. Biometals, 2007, 20(3): 233-248.
doi: 10.1007/s10534-006-9055-6 URL |
[17] | Leonhardt N, Cun P, Richaud P, et al. Zn/Cd/Co/Pb P1b-ATPases in plants, physiological roles and biological interest[M]// Gupta DK, Sandalio LM. Metal Toxicity in Plants: Perception, Signaling and Remediation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 227-248. |
[18] |
E ZG, Li TT, Chen C, et al. Genome-wide survey and expression analysis of P1B-ATPases in rice, maize and sorghum[J]. Rice Sci, 2018, 25(4): 208-217.
doi: 10.1016/j.rsci.2018.06.004 URL |
[19] |
Ma YT, Wei N, Wang QX, et al. Genome-wide identification and characterization of the heavy metal ATPase(HMA)gene family in Medicago truncatula under copper stress[J]. Int J Biol Macromol, 2021, 193: 893-902.
doi: 10.1016/j.ijbiomac.2021.10.197 URL |
[20] |
Zhang CR, Yang QH, Zhang XQ, et al. Genome-wide identification of the HMA gene family and expression analysis under Cd stress in barley[J]. Plants, 2021, 10(9): 1849.
doi: 10.3390/plants10091849 URL |
[21] |
黄治皓, 刘婷婷, 等. 芥菜HMA家族基因鉴定及其在镉胁迫下的表达分析[J]. 园艺学报, 2023, 50(6): 1230-1242.
doi: 10.16420/j.issn.0513-353x.2022-0509 |
Huang ZH, Liu TT, et al. Identification and expression analysis of HMA gene family in Brassica juncea under cadmium stress[J]. Acta Hortic Sin, 2023, 50(6): 1230-1242. | |
[22] |
Lu CN, Zhang LX, Tang Z, et al. Producing cadmium-free Indica rice by overexpressing OsHMA3[J]. Environ Int, 2019, 126: 619-626.
doi: 10.1016/j.envint.2019.03.004 URL |
[23] | Hosmani PS, Flores-Gonzalez M, van de Geest H, et al. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps[J]. bioRxiv, 2019: 767764. |
[24] |
Fang XL, Wang L, Deng XJ, et al. Genome-wide characterization of soybean P1B-ATPases gene family provides functional implications in cadmium responses[J]. BMC Genomics, 2016, 17(1): 376.
doi: 10.1186/s12864-016-2730-2 URL |
[25] |
Li NN, Xiao H, Sun JJ, et al. Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under cd stress[J]. Plant Soil, 2018, 426(1): 365-381.
doi: 10.1007/s11104-018-3637-2 |
[26] |
Xu GX, Guo CC, Shan HY, et al. Divergence of duplicate genes in exon-intron structure[J]. P Natl Acad Sci USA, 2012, 109(4): 1187-1192.
doi: 10.1073/pnas.1109047109 URL |
[27] |
Castillo-Davis CI, Mekhedov SL, Hartl DL, et al. Selection for short introns in highly expressed genes[J]. Nat Genet, 2002, 31(4): 415-418.
doi: 10.1038/ng940 pmid: 12134150 |
[28] |
Heyn P, Kalinka AT, et al. Introns and gene expression: Cellular constraints, transcriptional regulation, and evolutionary consequences[J]. BioEssays, 2015, 37(2): 148-154.
doi: 10.1002/bies.201400138 pmid: 25400101 |
[29] |
Morel Ml, Crouzet Jrm, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J]. Plant Physiol, 2008, 149(2): 894-904.
doi: 10.1104/pp.108.130294 URL |
[30] |
Chen YY, Chao ZF, Jin M, et al. A heavy metal transporter gene ZmHMA3a promises safe agricultural production on cadmium-polluted arable land[J]. J Genet Genomics, 2023, 50(2): 130-134.
doi: 10.1016/j.jgg.2022.08.003 URL |
[31] |
Liu H, Zhao HX, Wu LH, et al. Heavy metal ATPase 3(HMA3)confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J]. New Phytol, 2017, 215(2): 687-698.
doi: 10.1111/nph.2017.215.issue-2 URL |
[32] |
Wahinya FW, Yamazaki K, Jing Z, et al. Sorghum ionomics reveals the functional SbHMA3a allele that limits excess cadmium accumulation in grains[J]. Plant Cell Physiol, 2022, 63(5): 713-728.
doi: 10.1093/pcp/pcac035 URL |
[33] |
Seigneurin-Berny D, Gravot A, Auroy P, et al. HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions[J]. J Biol Chem, 2006, 281(5): 2882-2892.
doi: 10.1074/jbc.M508333200 pmid: 16282320 |
[34] |
Zhao HX, Wang LS, Zhao FJ, et al. SpHMA1 is a chloro plast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola[J]. Plant, Cell Environ, 2019, 42(4): 1112-1124.
doi: 10.1111/pce.v42.4 URL |
[1] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[2] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[3] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[4] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[5] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[6] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[7] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[8] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[9] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[10] | 陈浩婷, 张玉静, 刘洁, 代泽敏, 刘伟, 石玉, 张毅, 李天来. 低磷胁迫下番茄转录因子WRKY6功能分析[J]. 生物技术通报, 2023, 39(10): 136-147. |
[11] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[12] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[13] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
[14] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[15] | 申恒, 刘思慧, 李跃, 李敬涛, 梁文星. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 2022, 38(6): 74-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||