生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 62-70.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0784
梁丽存1(), 王克芬2, 宋祖洹1, 刘梦婷1, 李佳玉1, 罗会颖1, 姚斌1, 杨浩萌1(
)
收稿日期:
2024-08-15
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
杨浩萌,女,博士,副研究员,研究方向 :丝状真菌蛋白表达系统;E-mail: yhmbjbj@126.com作者简介:
梁丽存,女,硕士研究生,研究方向 :丝状真菌蛋白表达系统;E-mail: lianglicun1022@163.com
基金资助:
LIANG Li-cun1(), WANG Ke-fen2, SONG Zu-huan1, LIU Meng-ting1, LI Jia-yu1, LUO Hui-ying1, YAO Bin1, YANG Hao-meng1(
)
Received:
2024-08-15
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 在CRISPR/Cas9基因编辑系统中,sgRNA是重要的基因编辑元件之一,它与Cas9蛋白结合并通过间隔区序列与基因组DNA互补,引导Cas9蛋白对基因组进行精准剪切。为了提高塔宾曲霉的基因编辑效率,对sgRNA进行优化是一项可行的策略。 方法 对sgRNA的启动子和发夹结构进行了优化,并在塔宾曲霉中进行了基因编辑效率的验证。 结果 通过RNP法进行基因编辑时,带有“lock”结构的sgRNA的基因编辑效率比对照组提高了9.37%;sgRNA在进行体内表达时,使用tRNAGly15和tRNAGly17启动子的基因编辑效率分别高出5S rRNA启动子14%-16%;使用tRNAGly15启动子表达带有“lock”结构的sgRNA,能提高白孢率,并使塔宾曲霉的基因编辑效率提高到96%。 结论 “lock”结构和两种tRNAGly15和tRNA Gly17启动子能够提高塔宾曲霉的基因编辑效率。
梁丽存, 王克芬, 宋祖洹, 刘梦婷, 李佳玉, 罗会颖, 姚斌, 杨浩萌. 优化sgRNA提高塔宾曲霉基因编辑效率[J]. 生物技术通报, 2025, 41(3): 62-70.
LIANG Li-cun, WANG Ke-fen, SONG Zu-huan, LIU Meng-ting, LI Jia-yu, LUO Hui-ying, YAO Bin, YANG Hao-meng. Improving the Efficiency of Gene Editing by Optimizing sgRNA in Aspergillus tubingensis[J]. Biotechnology Bulletin, 2025, 41(3): 62-70.
图1 基因编辑元件结构及编辑过程示意图A:左侧从上至下分别表示cas9表达盒、不同启动子的sgRNA表达盒及donor DNA的组成。Cas9表达盒由Pterf启动子、加有核定位信号肽NLS的编码序列及Tterf终止子组成;sgRNA的启动子分别使用T7启动子、5SrRNA启动子(包括134 bp和395 bp两种长度)、tRNAGly15启动子、tRNAGly17启动子;右侧上方蓝色虚线框中为正常sgRNA的tracrRNA骨架,下方虚线框内的sgRNA tracrRNA骨架携带有一个发夹结构以锁型图表示;Donor DNA由上下游各500 bp的同源臂和中间的潮霉素抗性基因组成。B:CRISPR/Cas9系统工作的简略示意图,图中展示了表达盒法和RNP法所需的编辑原件。以表达盒法进行转化时,需将Cas9表达盒和sgRNA 表达盒连同Donor DNA一起加入制备好的原生质体中;RNP法进行转化需将Cas9蛋白与sgRNA体外孵育后以RNP复合体的形式与Donor DNA一起加入制备好的原生质体中进行转化。目标基因fwnA被剪切,剪切位点两侧基因组序列与Donor DNA的同源臂发生同源重组,使潮霉素基因插入fwnA基因内部,使基因失活,导致孢子颜色由黑变白,基因检测引物标注在Donor DNA的示意图上
Fig. 1 Schematic diagram of gene editing element structure and editing processA: The left side from top to bottom indicates the composition of cas9 expression cassette, sgRNA expression cassette of different promoters and donor DNA, respectively. The Cas9 expression cassette is composed of Pterf promoter, coding sequence, nuclear localization signal peptide NLS and Tterf terminator. The promoters of sgRNA are T7 promoter, 5SrRNA promoter (including 134 bp and 395 bp), tRNAGly15 promoter and tRNAGly17 promoter, respectively. The tracrRNA skeleton of normal sgRNA is in the blue dotted box above the right side, and the sgRNA tracrRNA skeleton in the dotted box below carries a hairpin structure represented by a “lock” graph. Donor DNA consists of 500 bp upstream and downstream homologous arms and intermediate hygromycin resistance genes. B: A brief schematic diagram of the CRISPR/Cas9 system, which shows the editing originals required for the expression cassette method and the RNP method. When the expression cassette method is used for transformation, the Cas9 expression cassette and sgRNA expression cassette need to be added to the prepared protoplasts together with Donor DNA. When the RNP method was used for transformation, Cas9 protein and sgRNA were incubated in vitro, and the two were added to the prepared protoplasts together with Donor DNA in the form of RNP complex for transformation. The target gene fwnA was cut, and the genome sequences on both sides of the cutting site were homologously recombined with the homologous arm of Donor DNA, thus the hygromycin gene was inserted into the fwnA gene, and the gene was inactivated, resulting in the spore color from black to white, and the gene detection primers were labeled on the schematic diagram of Donor DNA
引物名称Primer name | 序列Sequence |
---|---|
fwn-up-500-F | 5'-CAACCAAGCTCAAGGTTCCTTACGCG-3' |
fwn-up-R | 5'-GTTCTTGAGATCCCACTTGTAGGCTGGG-3' |
fwn-dw-F | 5'-CTATACCAACAACTTCTGCCTGAGCAAGG-3' |
fwn-dw-500-R | 5'-TCCGCAGCAGCGCAGTCAAAG-3' |
hph-fu-F | 5'-CAGGCTACAAGTGGGATCTCAAGAACGACAGAAGATGATATTGAAGGAGCACTTTTTG-3' |
hph-fu-R | 5'-AGTTGTTGGTATAGGGAATCCAGTAGTATCTGGAAGAGGTAAACCCGAAACG-3' |
5SRNA-F1 | 5'-ACGAAGAGGATGGTTGAACACGGAT-3' |
5SRNA-F2 | 5'-CACATACGACCACAGGGTGTG-3' |
P5SRNA-R | 5'-ACATACAACAGAAGGGATTCGCTGGTG-3' |
5SRNA-overlap-F | 5'-CACCAGCGAATCCCTTCTGTTGTATGTAGTGGGATCTCAAGAACTACGTTTTAGAGC-3' |
sgRNA-R | 5'-AAAAGCACCGACTCGGTGCC-3' |
CAS9-F | 5'-CGAGACAGCAGAATCACCGCCCAAGTTAAG-3' |
CAS9-R | 5'-ATTACACTTGTATTGGGATGAATTTTGTATGCAC-3' |
tRNAGly15-F | 5'-CTCCGTAGATAGAGATAGGAGTGGATAGGGA-3' |
tRNAGly15-R | 5'-TGCATCATCCGTGAATCGAACACGG-3' |
tRNAGly17-F | 5'-ACAATTCACAATCCGCAAGACGTTAACG-3' |
tRNAGly17-R | 5'-TGCATCATCCGTGAATCGAACACGG-3' |
tRNAGly15/17-overlap-F | 5'-CCGTGTTCGATTCACGGATGATGCAAGTGGGATCTCAAGAACTACGTTTTAG-3' |
表1 本研究所用引物
Table 1 Primers used in this study
引物名称Primer name | 序列Sequence |
---|---|
fwn-up-500-F | 5'-CAACCAAGCTCAAGGTTCCTTACGCG-3' |
fwn-up-R | 5'-GTTCTTGAGATCCCACTTGTAGGCTGGG-3' |
fwn-dw-F | 5'-CTATACCAACAACTTCTGCCTGAGCAAGG-3' |
fwn-dw-500-R | 5'-TCCGCAGCAGCGCAGTCAAAG-3' |
hph-fu-F | 5'-CAGGCTACAAGTGGGATCTCAAGAACGACAGAAGATGATATTGAAGGAGCACTTTTTG-3' |
hph-fu-R | 5'-AGTTGTTGGTATAGGGAATCCAGTAGTATCTGGAAGAGGTAAACCCGAAACG-3' |
5SRNA-F1 | 5'-ACGAAGAGGATGGTTGAACACGGAT-3' |
5SRNA-F2 | 5'-CACATACGACCACAGGGTGTG-3' |
P5SRNA-R | 5'-ACATACAACAGAAGGGATTCGCTGGTG-3' |
5SRNA-overlap-F | 5'-CACCAGCGAATCCCTTCTGTTGTATGTAGTGGGATCTCAAGAACTACGTTTTAGAGC-3' |
sgRNA-R | 5'-AAAAGCACCGACTCGGTGCC-3' |
CAS9-F | 5'-CGAGACAGCAGAATCACCGCCCAAGTTAAG-3' |
CAS9-R | 5'-ATTACACTTGTATTGGGATGAATTTTGTATGCAC-3' |
tRNAGly15-F | 5'-CTCCGTAGATAGAGATAGGAGTGGATAGGGA-3' |
tRNAGly15-R | 5'-TGCATCATCCGTGAATCGAACACGG-3' |
tRNAGly17-F | 5'-ACAATTCACAATCCGCAAGACGTTAACG-3' |
tRNAGly17-R | 5'-TGCATCATCCGTGAATCGAACACGG-3' |
tRNAGly15/17-overlap-F | 5'-CCGTGTTCGATTCACGGATGATGCAAGTGGGATCTCAAGAACTACGTTTTAG-3' |
名称Name | 序列Sequence(5'-3') |
---|---|
PT7-sgRNA-fwn | TAATACGACTCACTATAGGAGTGGGATCTCAAGAACTACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT |
PT7-lock-sgRNA-fwn | TAATACGACTCACTATAGGAGTGGGATCTCAAGAACTACGTTTTAGAGCTA |
表2 sgRNA体外转录模板序列信息
Table 2 Sequence information of sgRNA in vitro transcription template
名称Name | 序列Sequence(5'-3') |
---|---|
PT7-sgRNA-fwn | TAATACGACTCACTATAGGAGTGGGATCTCAAGAACTACGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT |
PT7-lock-sgRNA-fwn | TAATACGACTCACTATAGGAGTGGGATCTCAAGAACTACGTTTTAGAGCTA |
图2 Cas9、sgRNA表达盒及Donor DNA的扩增1:以134 bp 5S rRNA 为启动子的sgRNA;2:以395 bp 5S rRNA为启动子的sgRNA;3:以tRNAGly17为启动子的sgRNA;4:以tRNAGly15为启动子的sgRNA;5:tRNAGly15为启动子且融合了“lock”结构的sgRNA;6:供体DNA;7:Cas9表达盒
Fig. 2 Amplification of Cas9 expression cassette, sgRNA expression cassette and Donor DNA1: sgRNA with 134 bp 5S rRNA as promoter; 2: sgRNA with 395 bp 5S rRNA as promoter; 3: a sgRNA with tRNAGly17 as the promoter; 4: a sgRNA with tRNAGly15 as the promoter; 5: sgRNA with tRNAGly15 as promoter and fused with “lock” structure; 6: Donor DNA; 7:Cas9 expression cassette
图3 表达盒法中转化子生长情况及不同sgRNA启动子的基因编辑效率A:分别为5S rRNA 134 bp和tRNAGly15两个实验组转化子的生长情况(黑孢、白孢、杂孢颜色如图所示); B:不同长度的5S启动子、tRNAGly15启动子、tRNAGly17启动子的sgRNA的基因编辑效率
Fig. 3 Growth of transformants and the gene editing efficiency of different sgRNA promoters during transformation by expression cassette methodA: The growths of transformants in the two experimental groups of 5S rRNA 134 bp and tRNAGly15 (the colors of black spores, white spores, and miscellaneous spores are shown in the figure). B: The gene editing efficiency of sgRNA with different lengths of 5S promoter, tRNAGly15 promoter and tRNAGly17 promoter
图4 RNP法中“lock”结构的sgRNA的基因编辑效率图中为使用RNP法时正常sgRNA结构与融合了“lock”结构的sgRNA的基因编辑效率比较。每个实验组进行3次生物学重复,数据用spss软件进行误差分析。误差线代表标准误的大小;不同字母之间的显著性水平为0.05(下同)
Fig. 4 Gene editing efficiency of sgRNA with “lock” structure in RNP methodThe histogram in Fig.4 shows the gene editing efficiency of sgRNA containing ordinary sgRNA structure and sgRNA fused with “lock” structure.Three biological replicates were performed in each experimental group, and the obtained data were analyzed by spss software. The error line indicates the size of the standard error.The significance level between different letters is 0.05 ( the same below )
图 5 表达盒法中 tRNAGly15启动子叠加“lock”结构的基因编辑效率以tRNAGly15为启动子的sgRNA与以tRNAGly15为启动子并融合“lock”结构的sgRNA的基因编辑效率
Fig. 5 Gene editing efficiency of tRNAGly15 promoter superimposed with “lock” structure in expression cassette methodThe gene editing efficiency of sgRNA with tRNAGly15 as the promoter and sgRNA with tRNAGly15 as the promoter and fused with “lock” structure
1 | Gaur S, Kaur M, Kalra R, et al. Application of microbial resources in biorefineries: current trend and future prospects [J]. Heliyon, 2024, 10(8): e28615. |
2 | 塔宾曲霉菌——治理白色污染的又一“利器" [J]. 塑料科技, 2017, 45(7): 57. |
Aspergillus tabini-another "sharp weapon" to control white pollution [J]. Plast Sci Technol, 2017, 45(7): 57. | |
3 | Krisnawati R, Cahyanto MN, Sardjono S, et al. RNA-seq data of Aspergillus tubingensis NBRC 31125 in carbon catabolite repressor related to xylanase production [J]. Data Brief, 2022, 45: 108700. |
4 | Huang DM, Song YY, Liu YL, et al. A new strain of Aspergillus tubingensis for high-activity pectinase production [J]. Braz J Microbiol, 2019, 50(1): 53-65. |
5 | Okado N, Sugi M, Kasamoto S, et al. Safety evaluation of Arabinase (arabinan endo-1, 5-α-L-arabinanase) from Aspergillus tubingensis [J]. Food Sci Nutr, 2019, 8(1): 456-478. |
6 | Olarte RA, Horn BW, Singh R, et al. Sexual recombination in Aspergillus tubingensis [J]. Mycologia, 2015, 107(2): 307-312. |
7 | Deng HX, Gao RJ, Liao XR, et al. CRISPR system in filamentous fungi: current achievements and future directions [J]. Gene, 2017, 627: 212-221. |
8 | Jin FJ, Wang BT, Wang ZD, et al. CRISPR/Cas9-based genome editing and its application in Aspergillus species [J]. J Fungi, 2022, 8(5): 467. |
9 | 肖晗, 刘宜欣. CRISPR-Cas系统编辑丝状真菌的进展与挑战 [J]. 合成生物学, 2021, 2(2): 274-286. |
Xiao H, Liu YX. Progress and challenge of the CRISPR-Cas system in gene editing for filamentous fungi [J]. Synth Biol J, 2021, 2(2): 274-286. | |
10 | Zou G, Xiao ML, Chai SX, et al. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents [J]. Microb Biotechnol, 2021, 14(6): 2343-2355. |
11 | Kubicek CP, Harman GE. Trichoderma and gliocladium volume 1:Basic biology, taxonomy and genetics [M]. London: Taylor and Francis Ltd, 1998. |
12 | 杨浩萌, 梁丽存, 宋祖洹, 等. 提高丝状真菌精准基因编辑效率的策略 [J]. 微生物学通报, 2024, 51(5): 1425-1440. |
Yang HM, Liang LC, Song ZH, et al. Strategies for improving the efficiency of precise gene editing in filamentous fungi [J]. Microbiol China, 2024, 51(5): 1425-1440. | |
13 | 高伟欣, 黄火清, 赵晶, 等. 应用于基因编辑的核糖核蛋白复合体的构建与活性验证 [J]. 生物技术通报, 2022, 38(8): 60-68. |
Gao WX, Huang HQ, Zhao J, et al. Construction and activity verification of ribonucleoprotein complex for gene editing [J]. Biotechnol Bull, 2022, 38(8): 60-68. | |
14 | Kuivanen J, Korja V, Holmström S, et al. Development of microtiter plate scale CRISPR/Cas9 transformation method for Aspergillus niger based on in vitro assembled ribonucleoprotein complexes [J]. Fungal Biol Biotechnol, 2019, 6: 3. |
15 | Schuster M, Kahmann R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes [J]. Fungal Genet Biol, 2019, 130: 43-53. |
16 | Song LT, Ouedraogo JP, Kolbusz M, et al. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger [J]. PLoS One, 2018, 13(8): e0202868. |
17 | Schuster M, Schweizer G, Reissmann S, et al. Genome editing in Ustilago maydis using the CRISPR-Cas system [J]. Fungal Genet Biol, 2016, 89: 3-9. |
18 | Liu J, Zhu J, Zhang Q, et al. Establishing a one-step marker-free CRISPR/Cas9 system for industrial Aspergillus niger using counter-selectable marker Ang-ace2 [J]. Biotechnol Lett, 2023, 45(11-12): 1477-1485. |
19 | Zheng XM, Zheng P, Sun JB, et al. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger [J]. Fungal Biol Biotechnol, 2018, 5: 2. |
20 | Zheng XM, Zheng P, Zhang K, et al. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger [J]. ACS Synth Biol, 2019, 8(7): 1568-1574. |
21 | Katayama T, Tanaka Y, Okabe T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae [J]. Biotechnol Lett, 2016, 38(4): 637-642. |
22 | Riesenberg S, Helmbrecht N, Kanis P, et al. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage [J]. Nat Commun, 2022, 13(1): 489. |
23 | Dong C, Gou YW, Lian JZ. SgRNA engineering for improved genome editing and expanded functional assays [J]. Curr Opin Biotechnol, 2022, 75: 102697. |
24 | Nødvig CS, Hoof JB, Kogle ME, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli [J]. Fungal Genet Biol, 2018, 115: 78-89. |
25 | Zhang T, Gao YB, Wang RC, et al. Production of guide RNAs in vitro and in vivo for crispr using ribozymes and RNA polymerase II promoters [J]. Bio Protoc, 2017, 7(4): e2148. |
26 | Wang Q, Zhao QQ, Liu Q, et al. CRISPR/Cas9-mediated genome editing in Penicillium oxalicum and Trichoderma reesei using 5S rRNA promoter-driven guide RNAs [J]. Biotechnol Lett, 2021, 43(2): 495-502. |
27 | Fan C, Zhang W, Su XY, et al. CRISPR/Cas9-mediated genome editing directed by a 5S rRNA-tRNAGly hybrid promoter in the thermophilic filamentous fungus Humicola insolens [J]. Biotechnol Biofuels, 2021, 14(1): 206. |
28 | Zhang JX, Li KH, Sun Y, et al. An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production [J]. Biotechnol Biofuels Bioprod, 2024, 17(1): 22. |
29 | Arazoe T, Miyoshi K, Yamato T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus [J]. Biotechnol Bioeng, 2015, 112(12): 2543-2549. |
30 | Jung WJ, Park SJ, Cha S, et al. Factors affecting the cleavage efficiency of the CRISPR-Cas9 system [J]. Anim Cells Syst, 2024, 28(1): 75-83. |
31 | Sarkari P, Marx H, Blumhoff ML, et al. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger [J]. Bioresour Technol, 2017, 245(Pt B): 1327-1333. |
32 | Kuivanen J, Arvas M, Richard P. Clustered genes encoding 2-keto-l-gulonate reductase and l-Idonate 5-Dehydrogenase in the novel fungal d-glucuronic acid pathway [J]. Front Microbiol, 2017, 8: 225. |
33 | Shen CC, Hsu MN, Chang CW, et al. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation [J]. Nucleic Acids Res, 2019, 47(3): e13. |
34 | Kwon MJ, Schütze T, Spohner S, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi [J]. Fungal Biol Biotechnol, 2019, 6: 15. |
[1] | 张静安, 胡孝龙, 曹蓓蓓, 廖敏, 束长龙, 张杰, 王奎, 操海群. 苏云金芽胞杆菌可视化快速表达载体的构建与特性分析[J]. 生物技术通报, 2025, 41(1): 95-102. |
[2] | 毋舒宁, 苏永平, 李冬雪, 柏映国, 刘波, 张志伟. 一种谷氨酸棒杆菌4-异丙基苯甲酸诱导型启动子的设计与应用[J]. 生物技术通报, 2024, 40(7): 108-116. |
[3] | 李梦然, 叶伟, 李赛妮, 张维阳, 李建军, 章卫民. Lithocarols类化合物生物合成基因litI的表达及其启动子功能分析[J]. 生物技术通报, 2024, 40(6): 310-318. |
[4] | 王周, 余杰, 王金华, 王永泽, 赵筱. 厌氧表达乳酸脱氢酶以提高大肠杆菌产D-乳酸光学纯度[J]. 生物技术通报, 2024, 40(5): 290-299. |
[5] | 张清兰, 张亚冉, 鞠志花, 王秀革, 肖遥, 王金鹏, 魏晓超, 高亚平, 白福恒, 王洪程. 牛TARDBP基因核心启动子鉴定与转录调控分析[J]. 生物技术通报, 2024, 40(4): 306-318. |
[6] | 刘玉萍, 张维阳, 章卫民, 叶伟, 李冬利. Phomopsis tersa FS441聚酮杂萜类化合物生物合成基因启动子的鉴定[J]. 生物技术通报, 2024, 40(12): 248-255. |
[7] | 王紫睿, 刘潇菡, 修宇, 林善枝. 山杏种子PsMATE40基因启动子的克隆及驱动表达分析[J]. 生物技术通报, 2024, 40(11): 192-201. |
[8] | 赵锐, 狄靖宜, 张广通, 刘浩, 高伟霞. 基于转录组学挖掘兽疫链球菌内源表达元件及高产透明质酸应用[J]. 生物技术通报, 2024, 40(10): 296-304. |
[9] | 张洁萍, 关跃峰. 基于启动子编辑的作物育种[J]. 生物技术通报, 2024, 40(10): 53-61. |
[10] | 朱毅, 柳唐镜, 宫国义, 张洁, 王晋芳, 张海英. 西瓜ClPP2C3克隆及表达分析[J]. 生物技术通报, 2024, 40(1): 243-249. |
[11] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[12] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[13] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[14] | 史光珍, 王兆晔, 孙琦, 朱新霞. 雪莲SikCDPK1启动子的克隆和活性分析[J]. 生物技术通报, 2022, 38(9): 191-197. |
[15] | 陈光, 李佳, 杜瑞英, 王旭. pOsHAK1:OsFLN2提高水稻的糖代谢水平和抗旱性[J]. 生物技术通报, 2022, 38(8): 92-100. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||