生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 221-227.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0449
• 技术与方法 • 上一篇
张瑶毅1,2(
), 殷恒福2, 刘军2, 韩小娇2, 范艳如2, 王民炎2(
), 曹受金1(
)
收稿日期:2025-04-30
出版日期:2025-11-26
发布日期:2025-12-09
通讯作者:
王民炎,男,博士,研究助理,研究方向 :林木遗传育种;E-mail: wangminyan@caf.ac.cn作者简介:张瑶毅,女,硕士研究生,研究方向 :园林植物与观赏园艺;E-mail: 3207684019@qq.com
基金资助:
ZHANG Yao-yi1,2(
), YIN Heng-fu2, LIU Jun2, HAN Xiao-jiao2, FAN Yan-ru2, WANG Min-yan2(
), CAO Shou-jin1(
)
Received:2025-04-30
Published:2025-11-26
Online:2025-12-09
摘要:
目的 建立香椿中快速高效的遗传转化系统,为基因功能研究及分子育种提供技术支持。 方法 以香椿组培苗为材料,采用农杆菌介导真空渗透法进行瞬时转化植物叶片,并利用甜菜红素RUBY报告基因载体评估转化效率和目的基因表达水平,针对农杆菌菌株类型、侵染浓度、真空渗透时间等条件进行优化研究,并采用来自不同地区的5个香椿组培苗材料进行验证与评估。 结果 建立了适用于香椿的瞬时转化体系,筛选出了适用于香椿瞬时转化的农杆菌菌株为K599和GV3101菌株,通过比较转化效率获得的最适转化条件为150 μmol/L乙酰丁香酮、菌液浓度OD600为0.5,真空渗透30 min,共培养3-4 d。结果表明该转化体系具有高效的转化效率。 结论 成功建立了适合香椿的瞬时基因转化体系,基于RUBY报告基因表达情况优化了转化条件,并在不同香椿材料转化验证,为分子育种奠定基础。
张瑶毅, 殷恒福, 刘军, 韩小娇, 范艳如, 王民炎, 曹受金. 农杆菌介导的香椿叶片瞬时转化体系的建立及优化[J]. 生物技术通报, 2025, 41(11): 221-227.
ZHANG Yao-yi, YIN Heng-fu, LIU Jun, HAN Xiao-jiao, FAN Yan-ru, WANG Min-yan, CAO Shou-jin. Establishment and Optimization of Agrobacterium-mediated Transient Transformation System of Toona sinensis Leaves[J]. Biotechnology Bulletin, 2025, 41(11): 221-227.
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 碱基数 Base pairs (bp) |
|---|---|---|
| Ts-acting-F | TGATTGGGATGGAAGCAGCA | 20 |
| Ts-acting-R | GAACATGGTTGAACCGCCAC | 20 |
| Ts-RUBY-F | AACAGCATCCTTGAGTCTCTTCG | 23 |
| Ts-RUBY-R | TTCTCTTTGGAGATCTCGCCTTC | 23 |
表1 荧光定量PCR引物序列
Table 1 Fluorescence quantitative PCR primer sequences
引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 碱基数 Base pairs (bp) |
|---|---|---|
| Ts-acting-F | TGATTGGGATGGAAGCAGCA | 20 |
| Ts-acting-R | GAACATGGTTGAACCGCCAC | 20 |
| Ts-RUBY-F | AACAGCATCCTTGAGTCTCTTCG | 23 |
| Ts-RUBY-R | TTCTCTTTGGAGATCTCGCCTTC | 23 |
图1 香椿瞬时转化体系建立A:未侵染的香椿组培苗,图中标尺为2 cm;B:瞬时转化RUBY的香椿苗,图中标尺为2 cm;C:RUBY基因表达水平分析,EV为空载侵染过的香椿苗,RUBY-OE为RUBY侵染的过表达香椿苗。***P<0.001
Fig. 1 Establishment of transient transformation system of T. sinensisA: Uninfected tissue-cultured seedlings of T. sinensis, scale bar=2 cm; B: transiently transformed T. sinensis seedlings with RUBY, scale bar=2 cm; C: analysis of RUBY gene expression, where EV indicates empty vector-infected T. sinensis seedlings, and RUBY-OE indciates RUBY-overexpressing T. sinensis seedlings infected with RUBY. *** P<0.001
图2 不同处理香椿转化效率的比较A:不同含RUBY质粒的农杆菌菌株侵染过的香椿植株,图中标尺为2 cm;B:不同农杆菌浓度处理的香椿植株,图中标尺为2 cm;C:不同真空渗透处理时长侵染的香椿植株,图中标尺为2 cm
Fig. 2 Comparison of transformation efficiency of T. sinensis bydifferent treatmentsA: T. sinensis seedlings infected with different Agrobacterium strains containing RUBY plasmids, scale bar=2 cm. B: T. sinensis seedlings treated with different concentrations of Agrobacterium, scale bar=2 cm. C: T. sinensis seedlings infected with different durations of vacuum infiltration treatment, scale bar=2 cm
图3 不同处理对香椿叶片转化效率的影响A:农杆菌菌株类型对香椿叶片瞬时转化效率的影响;B:农杆菌浓度对香椿叶片瞬时转化效率的影响;C:真空渗透时间对香椿叶片瞬时转化效率的影响;不同小写字母表示在0.05水平上差异显著;+为红色面积占变色叶总面积≤20%;++为红色面积占变色叶总面积20%-50%;+++为红色面积占变色叶总面积50%-80%
Fig. 3 Effects of different treatments on the transformation efficiency of T. sinensis leavesA: The effect of Agrobacterium strain types on the transient transformation efficiency of T. sinensis leaves. B: The effect of Agrobacterium concentration on the transient transformation efficiency of T. sinensis leaves. C: The effect of vacuum infiltration time on the transient transformation efficiency of T. sinensis leaves. Different letters indicate significant differences at the 0.05 level. + is red area ≤20% of total area of variegated leaves; ++ is red area 20%-50% of total area of variegated leaves; +++ is red area 50%-80% of total area of variegated leaves
图4 来自不同地区的5个香椿组培苗材料的侵染图中C-1和C-2为源自广西地区的香椿材料;C-3为源自英国的香椿材料;C-4为源自安徽的香椿材料;C-5为源自四川的香椿材料,所用材料均来自中国林业科学研究院亚热带林业研究所林木种质资源课题组组培室继代培养30 d,图中标尺为2 cm
Fig. 4 Infection of five T. sinensis tissue culture seedling materials from different regionsIn the figure, C-1 and C-2 are T. sinensis material originating from the Guangxi region. C-3 is a T. sinensis material originating from the United Kingdom. C-4 is a T. sinensis material originating from Anhui. C-5 is a T. sinensis material originating from Sichuan. All used materials were sub-cultured for 30 d in the tissue culture room of research group on forest tree germplasm resources of Research Institute of Tropical Forestry, Chinese Academy of Forestry. The scale bar in the figure is 2 cm
图5 不同地区的5个香椿组培苗材料转化效率不同小写字母表示在0.05水平上差异显著
Fig. 5 Transformation efficiency of five T. sinensis tissue culture seedling materials from different regionsDifferent letters indicate significant differences at the 0.05 level
| [1] | 杨家强, 陈振科, 陆江, 等. 材用香椿研究现状 [J]. 广西林业科学, 2022, 51(1): 136-141. |
| Yang JQ, Chen ZK, Lu J, et al. Research progress of wood-purpose Toona sinensis [J]. Guangxi Forestry Science, 2022, 51(1): 136-141. | |
| [2] | 刘里. 曲靖地区香椿芽中微量元素的含量研究 [J]. 安徽农业科学, 2011, 39(30): 18747-18749. |
| Liu L. Determination on Trace elements in burgeon of Toona sinesis roem in Qujing city [J]. Journal of Anhui Agricultural Sciences,2011, 39(30): 18747-18749. | |
| [3] | Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice [J]. Life Sci, 2014, 109(1): 8-14. |
| [4] | 赵倩, 朱顺华, 蔡霞, 等. 红和绿香椿芽贮藏过程中花青素和木质素含量及相关基因表达分析 [J]. 西北植物学报, 2023, 43(8): 1304-1313. |
| Zhao Q, Zhu SH, Cai X, et al. Analysis of anthocyanin and lignin contents and expression of related genes in red and green Toona sinensis buds during storage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(8): 1304-1313. | |
| [5] | Zheng YP, Li WJ, Dai JH, et al. Two terpene synthases are involved in multiple sesquiterpene biosynthesis in the woody vegetable, Toona sinensis [J]. Int J Mol Sci, 2025, 26(4): 1578. |
| [6] | Xu J, Fan YR, Han XJ, et al. Integrated transcriptomic and metabolomic analysis reveal the underlying mechanism of anthocyanin biosynthesis in Toona sinensis leaves [J]. Int J Mol Sci, 2023, 24(20): 15459. |
| [7] | 吴荣荣, 汪阳忠, 潘晓璐, 等. 烟草瞬时表达技术的多途径应用研究进展 [J]. 中国烟草科学, 2024, 45(5): 114-120. |
| Wu RR, Wang YZ, Pan XL, et al. Advances and prospects of research on multi-pathway applications of tobacco transient expression technology [J]. Chinese Tobacco Science, 2024, 45(5): 114-120. | |
| [8] | Wang M, Qin YY, Wei NN, et al. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in Citrus seeds and its application in gene functional analysis [J]. Front Plant Sci, 2023, 14: 1293374. |
| [9] | 罗昕, 李云帆. 一种农杆菌介导的在烟草叶片中实现外源基因瞬时表达的方法 [J]. 新农民, 2024(21): 58-61. |
| Luo X, Li YF. Method for realizing transient expression of exogenous genes in tobacco leaves mediated by Agrobacterium tumefaciens [J]. New Farmers, 2024(21): 58-61. | |
| [10] | 李婷婷, 王鑫鑫, 李梦遥, 等. 平板法: 一种简便有效的拟南芥和烟草转基因方法 [J]. 山西大学学报: 自然科学版, 2025: 1-6. |
| Li TT, Wang XX, Li MY, et al. Plate culture method: A simple and effective transformation method of Arabidopsis and tabacco [J]. Journal of Shanxi University: Natural Science Edition, 2025: 1-6. | |
| [11] | 余智莹, 张平, 徐志胜, 等. 根癌农杆菌介导的‘魏可’葡萄遗传转化体系的优化 [J]. 果树学报, 2012, 29(3): 343-349, 524. |
| Yu ZY, Zhang P, Xu ZS, et al. Optimizing conditions for Agrobacterium tumefaciens mediated transformation of ‘Wink’ grapevine [J]. J Fruit Sci, 2012, 29(3): 343-349, 524. | |
| [12] | 李刚, 宋平丽, 王翔, 等. 农杆菌介导的杜梨叶片瞬时转化方法的建立 [J]. 果树学报, 2021, 38(11): 2006-2013. |
| Li G, Song PL, Wang X, et al. Establishment of Agrobacterium tumefaciens mediated transient transformation system in young leaves of Duli pear (Pyrus betulifolia) [J]. J Fruit Sci, 2021, 38(11): 2006-2013. | |
| [13] | Li MX, Wu QQ, Guo FQ, et al. A versatile, rapid Agrobacterium-mediated transient expression system for functional genomics studies in Cannabis seedling [J]. Planta, 2024, 260(1): 18. |
| [14] | Chakraborty J, Sobol G, Xia F, et al. PP2C phosphatase Pic6 suppresses MAPK activation and disease resistance in tomato [J]. Mol Plant Microbe Interact, 2025, 38(1): 43-49. |
| [15] | 杨丽萍, 金太成, 徐洪伟, 等. 植物中瞬时表达外源基因的新型侵染技术 [J]. 遗传, 2013, 35(1): 111-117. |
| Yang LP, Jin TC, Xu HW, et al. A new agroinoculation technology for foreign gene expression in plants by means of transient expression [J]. Hereditas, 2013, 35(1): 111-117. | |
| [16] | 廖晶晶, 牛聪聪, 解群杰, 等. 基因瞬时表达技术在园艺植物上的应用研究进展 [J]. 园艺学报, 2017, 44(9): 1796-1810. |
| Liao JJ, Niu CC, Xie QJ, et al. The recent advances of transient expression system in horticultural plants [J]. Acta Horticulturae Sinica, 2017, 44(9): 1796-1810. | |
| [17] | He YB, Zhang T, Sun H, et al. A reporter for noninvasively monitoring gene expression and plant transformation [J]. Hortic Res, 2020, 7(1): 152. |
| [18] | Niazian M, Belzile F, Curtin SJ, et al. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY [J]. Front Plant Sci, 2023, 14: 1207762. |
| [19] | Yang HH, Zhang YY, Fu QJ, et al. The DR5 and E8 reporters are suitable systems for studying the application of the Ruby reporter gene in tomato [J]. Veg Res, 2023, 3(1). |
| [20] | 李雯静, 李旭彤, 辛同旭, 等. RUBY无创筛选系统在黄瓜遗传转化中的应用 [J]. 中国蔬菜, 2025, (3): 46-54. |
| Li WJ, Li XT, Xin TX, et al. Application of RUBY noninvasively selection system in cucumber genetic transformation [J]. China Vegetables, 2025, (3): 46-54. | |
| [21] | Mei GG, Chen A, Wang YR, et al. A simple and efficient in planta transformation method based on the active regeneration capacity of plants [J]. Plant Commun, 2024, 5(4): 100822. |
| [22] | 杨爱琳. 黑果枸杞瞬时转化体系建立及LrSAUR启动子表达分析 [D]. 沈阳: 沈阳农业大学, 2023. |
| Yang AL. Establishment of transient transformation system of Lycium ruthenicum and expression analysis of LrSAUR promoter [D]. Shenyang: Shenyang Agricultural University, 2023. | |
| [23] | 宋奕珩, 龚一富, 袁佳骜, 等. 根癌农杆菌介导的金线莲瞬时表达体系的优化[J]. 分子植物育种, 2024: 1-6. |
| Song YH, Gong YF, Yuan JA, et al. Optimization of Agrobacterium tumefaciens mediated transient expression system of Anoectochilus roxburghii [J]. Molecular Plant Breeding, 2024: 1-6. | |
| [24] | 田壮, 房晨曦, 刘雅婷, 等. 梅花花瓣瞬时转化体系构建 [J]. 园艺学报, 2025, 52(4): 908-920. |
| Tian Z, Fang CX, Liu YT, et al. Construction of transient transformation system of petals in Prunus mume [J]. Acta Horticulturae Sinica, 2025, 52(4): 908-920. | |
| [25] | Xie JN, He C, Li ZQ, et al. A rapid and efficient Agrobacterium-mediated transient transformation system in grape berries [J]. Protoplasma, 2024, 261(4): 819-830. |
| [1] | 于文杰, 范斯然, 高文丽, 邢宇, 秦岭. 板栗核黄素合成通路关键基因鉴定及功能验证[J]. 生物技术通报, 2025, 41(9): 232-241. |
| [2] | 文博霖, 万敏, 胡建军, 王克秀, 景晟林, 王心悦, 朱博, 唐铭霞, 李兵, 何卫, 曾子贤. 马铃薯川芋50遗传转化及基因编辑体系的建立[J]. 生物技术通报, 2025, 41(4): 88-97. |
| [3] | 张欢欢, 穆晓娅, 周静宜, 吕高培, 肖楠, 李敏, 郝曜山, 吴慎杰. 糜子高频胚胎发生品种遗传转化体系的建立[J]. 生物技术通报, 2025, 41(10): 164-174. |
| [4] | 宋倩娜, 武诗云, 曹时瑾, 段永红, 冯瑞云. 通过马铃薯毛状根体系快速鉴定StHKT1基因的功能[J]. 生物技术通报, 2025, 41(10): 233-241. |
| [5] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
| [6] | 陶娜, 李茂兴, 郭华春. 发根农杆菌介导的甘薯遗传转化体系优化[J]. 生物技术通报, 2023, 39(10): 175-183. |
| [7] | 周承哲, 常笑君, 朱晨, 程春振, 陈裕坤, 赖钟雄, 林玉玲, 郭玉琼. 茶树原位转化方法的建立[J]. 生物技术通报, 2022, 38(2): 263-268. |
| [8] | 徐楠, 徐宇娟, 孙盼, 宗仁杰, 郭敏亮. 根癌农杆菌vbp2基因启动子转录调控的探析[J]. 生物技术通报, 2021, 37(12): 41-49. |
| [9] | 赵忠娟,魏艳丽,李纪顺,王贻莲,杨合同. 一种根癌农杆菌介导的耐盐椒样薄荷含芽茎段转化系统[J]. 生物技术通报, 2017, 33(7): 126-132. |
| [10] | 石琳, 胡延萍, 王建科, 王钧, 许小宁, 李毅, 王莉. 云生毛茛ISSR-PCR体系优化与引物筛选[J]. 生物技术通报, 2016, 32(9): 65-71. |
| [11] | 周海兰,李绍鹏,李卫亮,贺军虎,包冬红,李茂富. 油梨基因组DNA提取、SSR-PCR反应体系优化及引物筛选[J]. 生物技术通报, 2016, 32(4): 143-150. |
| [12] | 王文治, 杨本鹏, 蔡文伟, 熊国如, 王俊刚, 冯翠莲, 张树珍. 甘蔗一次多基因遗传转化及多重PCR检测[J]. 生物技术通报, 2016, 32(1): 103-108. |
| [13] | 钱志瑶, 周道堂, 黄秀平, 周镁, 陈祖云, 覃容贵. 黔产宽叶缬草ISSR反应体系的建立与优化[J]. 生物技术通报, 2015, 31(7): 69-75. |
| [14] | 高航, 高玉亮, 李葵花,. 羽衣甘蓝下胚轴农杆菌介导遗传转化体系的优化[J]. 生物技术通报, 2015, 31(6): 111-115. |
| [15] | 李伟, 翟羽佳, 李鹏程, 王昌禄. 农杆菌介导的蓖麻转化体系优化[J]. 生物技术通报, 2015, 31(5): 140-145. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||