生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 76-85.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0975

• 技术与方法 • 上一篇    下一篇

多策略协同提升蛋白质晶体的衍射分辨率

任泓宇1,2(), 庞翠萍1, 古阳1(), 周佳海1,3()   

  1. 1.中国科学院深圳先进技术研究院,深圳 518055
    2.中国科学院大学,北京 101408
    3.南京师范大学食品与制药工程学院,南京 210023
  • 收稿日期:2025-09-11 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 周佳海,男,博士,教授,研究方向 :结构生物学、天然产物生物合成;E-mail: jiahai@siat.ac.cn
    古阳,男,博士,副研究员,研究方向 :生物催化、有机化学;E-mail: yang.gu@siat.ac.cn
  • 作者简介:任泓宇,男,硕士研究生,研究方向 :结构生物学;E-mail: hy.ren@siat.ac.cn
  • 基金资助:
    国家自然科学基金项目(22201295);广东省科技计划项目(2024B1111160007);深圳市科技重大专项(KJZD20230923115901003);中国博士后科学基金第73批面上资助(2023M733664)

Multi-strategy Synergy Enhances the Diffraction Resolution of Protein Crystals

REN Hong-yu1,2(), PANG Cui-ping1, GU Yang1(), ZHOU Jia-hai1,3()   

  1. 1.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055
    2.University of Chinese Academy of Sciences, Beijing 101408
    3.School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023
  • Received:2025-09-11 Published:2026-01-26 Online:2026-02-04

摘要:

目的 蛋白质晶体衍射是结构生物学研究的重要方法,晶体的衍射分辨率直接决定了模型的精确度及应用可行性。需要采取多种策略组合优化蛋白质晶体质量,提高晶体的衍射分辨率。 方法 以催化芳基偶联反应的P450酶为研究对象,利用分子生物学技术构建原核表达系统,并通过镍柱亲和层析和体积排阻色谱等方法进行纯化。在结晶阶段,采用气相扩散法系统筛选了1 632种初始条件,以此为基础,重点对缓冲液pH值、沉淀剂种类与浓度等关键变量进行精细化筛选,并引入多种添加剂以改善结晶环境。进一步结合结构预测分析,对蛋白柔性区域进行理性截短设计,并尝试SUMO标签的融合表达以增强蛋白的稳定性。 结果 实现了P450蛋白在大肠杆菌中的高效可溶表达,并经两步纯化获得可用于结晶的高纯度蛋白。通过大规模结晶条件筛选与多轮优化,结合序列截短和SUMO标签融合等策略协同作用,晶体形态显著改善,由原来的微晶或无定形沉淀转变为外观规则、棱角清晰的单晶。晶体衍射分辨率由初始的10 Å显著提升至2.86 Å,获得了可用于高分辨率结构解析的优质晶体。 结论 使用多策略协同的方法成功改善了蛋白晶体形态,提高了蛋白晶体的衍射分辨率。

关键词: 蛋白结晶, X射线衍射, 蛋白纯化, 蛋白表达, 细胞色素P450

Abstract:

Objective Protein crystallographic diffraction is an essential technique in structural biology research. The diffraction resolution of crystals directly determines the accuracy of atomic models and their practical applicability. Therefore, a combination of multiple strategies is required to optimize protein crystallization quality and enhance diffraction resolution. Method The P450 enzyme, which catalyzes aryl coupling reactions, was chosen as the research focus. A prokaryotic expression system was first constructed via molecular biology techniques. The protein was purified using nickel-affinity chromatography and size-exclusion chromatography. During the crystallization stage, 1,632 initial conditions were systematically screened through the vapor diffusion method. Based on preliminary results, key variables including buffer pH, precipitant type and concentration were finely optimized, and various additives were introduced to improve the crystallization environment. Furthermore, rational truncation of flexible regions was designed according to structural predictions, and SUMO tag fusion was attempted to enhance protein stability. Result The P450 protein was successfully expressed solubly at high levels in E. coli and purified to high purity via a two-step purification process, making it suitable for crystallization screening. Through large-scale crystallization condition screening and multiple rounds of optimization, combined with synergistic strategies including sequence truncation and SUMO fusion, crystal morphology was significantly improved—transitioning from initial microcrystals or amorphous precipitates to well-defined single crystals with regular shapes and sharp edges. The diffraction resolution of the crystals was markedly enhanced from an initial 10 Å to 2.86 Å, yielding high-quality crystals suitable for high-resolution structural analysis. Conclusion By employing a multi-strategy synergy, the protein crystal morphology and diffraction resolution of protein crystals is significantly enhanced.

Key words: protein crystallization, X-ray diffraction, protein purification, protein expression, cytochrome P450