[1]Choi KH, Kim KJ. Applications of transposon-based gene delivery system in bacteria[J]. J Microbiol Biotechnol, 2009, 19(3):217-228. [2]Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4):611-620. [3]Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811. [4]Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro[J]. Genes & Development, 1999, 13(24):3191-3197. [5]Ketting RF, Fischer SEJ, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans[J]. Genes & Development, 2001, 15(20):2654-2659. [6]Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells[J]. Nature Biotechnology, 2002, 20(5):500-505. [7] Weber ND, Merkel OM, Kissel T, et al. PEGylated poly(ethylene imine)copolymer-delivered siRNA inhibits HIV replication in vitro[J]. Journal of Controlled Release, 2012, 157(1):55-63. [8] Hannon GJ. RNA interference[J]. Nature, 2002, 418(6894):244-251.
[9] Mello CC, Conte D. Revealing the world of RNA interference[J]. Nature, 2004, 431(7006):338-342. [10] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs[J]. Methods, 2002, 26(2):199-213. [11] Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi:results and challenges[J]. Annual Review of Biochemistry, 2010, 79(6):37-64. [12] 石智, 符立梧. RNAi 及其在肿瘤研究中的应用[J]. 生物化学与生物物理进展, 2004, 31(6):492-499. [13] Harborth J, Elbashir SM, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs[J]. Journal of Cell Science, 2001, 114(24):4557-4565. [14] Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Research, 2004, 32(3):936-948. [15] El-Lakkani A, Elgawad WHA, Sayed EA. Selection of highly efficient small interference RNA(SiRNA)targeting mammalian genes[J]. Journal of Biophysical Chemistry, 2013, 4(2):72-79. [16] Naito Y, Yamada T, Ui-Tei K, et al. siDirect:highly effective, target-specific siRNA design software for mammalian RNA interference[J]. Nucleic Acids Research, 2004, 32(suppl 2):W124-W129. [17] Boudreau RL, Spengler RM, Hylock RH, et al. siSPOTR:a tool for designing highly specific and potent siRNAs for human and mouse[J]. Nucleic Acids Research, 2013, 41(1):e9. [18] Eguchi A, Meade BR, Chang YC, et al. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein[J]. Nature Biotechnology, 2009, 27(6):567-571. [19] 谷凌云, 郦明芳, 曹腾威, 等. 脂联素通过腺苷酸活化蛋白激酶抑制血管紧张素Ⅱ诱导的心房肌细胞肥大[J]. 中华心律失常学杂志, 2013, 17(5):371-375. [20] Duxbury MS, Whang EE. RNA interference:a practical approach[J]. Journal of Surgical Research, 2004, 117(2):339-344. [21] Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics:a potential new class of pharmaceutical drugs[J]. Nature Chemical Biology, 2006, 2(12):711-719. [22] Zhao M, Yang H, Jiang X, et al. Lipofectamine RNAiMAX:an efficient siRNA transfection reagent in human embryonic stem cells[J]. Molecular Biotechnology, 2008, 40(1):19-26. [23] 李杰, 贾钰华, 杨萍, 等. 脂质体介导化学合成 siRNA 转染原代心肌细胞:筛选理想浓度[J]. 中国组织工程研究与临床康复, 2010, 14(007):1239-1243. [24] 王玉洁, 吴韶菊, 吴芹. 筛选介导化学合成 siRNA 转染原代肝癌细胞的最佳试剂[J]. 中国组织工程研究与临床康复, 2011, 15(2):245-248. [25] Park M, Youn BS, Zheng X, et al. Globular adiponectin, acting via AdipoR1/APPL1, protects H9c2 cells from hypoxia/reoxygenation-induced apoptosis[J]. PloS One, 2011, 6(4):e19143. [26] 邓清华, 付世新, 刘国文, 等. siRNA 特异性抑制犊牛原代肝细胞 SREBP—1c 基因的表达[J]. 中国兽医学报, 2011, 31(7):1050-1053. [27] Luo J, Deng ZL, Luo X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system[J]. Nature Protocols, 2007, 2(5):1236-1247. [28] Wang W, Ha CH, Jhun BS, et al. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS[J]. Blood, 2010, 115(14):2971-2979. [29] Liu J, Xu X, Feng X, et al. Adenovirus-mediated delivery of bFGF small interfering RNA reduces STAT3 phosphorylation and induces the depolarization of mitochondria and apoptosis in glioma cells U251[J]. Journal of Experimental & Clinical Cancer Research, 2011, 30(1):80-86. [30] Sakurai Y, Hatakeyama H, Sato Y, et al. Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system[J]. Molecular Therapy, 2013, 21(6):1195-1203. [31] Liu Z, Winters M, Holodniy M, et al. siRNA delivery into human t cells and primary cells with carbon-nanotube transporters[J]. Angewandte Chemie International Edition, 2007, 46(12):2023-2027. [32] Juliano R, Alam MR, Dixit V, et al. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides[J]. Nucleic Acids Research, 2008, 36(12):4158-4171. [33] Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy:Past achievements, present challenges and future goals[J]. Advanced Drug Delivery Reviews, 2013, 65(15):2023-2033. [34] Wang Y, Li Z, Wang J, et al. Graphene and graphene oxide:biofunctionalization and applications in biotechnology[J]. Trends in Biotechnology, 2011, 29(5):205-212. [35] Pantarotto D, Singh R, Mccarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery[J]. Angewandte Chemie, 2004, 116(39):5354-5358. [36] Kam NWS, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing[J]. Journal of The American Chemical Society, 2005, 127(36):12492-12493. [37] Yang XZ, Dou S, Sun TM, et al. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy[J]. Journal of Controlled Release, 2011, 156(2):203-211. [38] Podesta JE, Al-Jamal KT, Herrero MA, et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model[J]. Small, 2009, 5(10):1176-1185. [39] Al-Jamal KT, Gherardini L, Bardi G, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing[J]. Proceedings of the National Academy of Sciences, 2011, 108(27):10952-10957. [40] Cheung W, Pontoriero F, Taratula O, et al. DNA and carbon nanotubes as medicine[J]. Advanced Drug Delivery Reviews, 2010, 62(6):633-649. [41] Liu B, Zhao L, Ma HZ, et al. Knockdown of MRP4 by lentivirus-mediated siRNA improves sensitivity to adriamycin in adriamycin-resistant acute myeloid leukemia cells[J]. Chinese Science Bulletin, 2012(1):1-8. [42] Krajcik R, Jung A, Hirsch A, et al. Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes[J]. Biochemical and Biophysical Research Communications, 2008, 369(2):595-602. [43] Yokota T, Sakamoto N, Enomoto N, et al. Inhibition of intracellular hepatitis C virus replication by synthetic and vector-derived small interfering RNAs[J]. Embo Reports, 2003, 4(6):602-608. |