[1] Ha T, Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging[J]. Annu Rev Phys Chem, 2012, 63:595-617. [2] Geddes CD, Lakowicz JR. Reviews in fluorescence[M]. Springer, 2011, XII. [3] Maiti S, Haupts U, Webb WW. Fluorescence correlation spectros-copy:diagnostics for sparse molecules[J]. Proc Natl Acad Sci USA, 1997, 94(22):11753-11757. [4] Masi A, Cicchi R, Carloni A, et al. Optical methods in the study of protein-proteininteractions[J]. Adv Exp Med Biol, 2010, 674:33-42. [5] Ludwig C. Diffusion zwischen ungleich erw?rmten Orten gleich zusammengesetzter L?sungen[J]. Sitzungsber Akad Wiss Wien Math-Naturwiss, 1856, 20:539. [6] Wienken CJ, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids using microscale thermophoresis[J]. Nat Commun, 2010, 1:100. [7] Duhr S, Braun D. Thermophoretic depletion follows Boltzmann distribution[J]. Phys Rev Lett, 2006, 96(16):168301. [8] Duhr S, Braun D. Why molecules move along a temperature gradient[J]. Proc Natl Acad Sci USA, 2006, 103(52):19678-19682. [9] Jerabek-Willemsen M, Wienken CJ, Braun D, et al. Molecular interaction studies using microscale thermophoresis[J]. Assay Drug Dev Technol, 2011, 9(4):342-353. [10] Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315. [11] Garner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions:application to components of the Escherichia coli lactose operon regulatory system[J]. Nucleic Acids Res, 1981, 9(13):3047-3060. [12] Engvall E, Perlmann P. Enzyme-linked immunosorbent assay(ELISA). Quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8(9):871-874. [13] Hellman LM, Fried MG. Electrophoretic mobility shift assay(EMSA)for detecting protein-nucleic acid interactions[J]. Nat Protoc, 2007, 2(8):1849-1861. [14] Fujime S, Ishiwata S. Dynamic study of F-actin by quasielastic scattering of laser light[J]. J Mol Biol, 1971, 62(1):251-265. [15] Hanlon AD, Larkin MI, Reddick RM. Free-solution, label-free protein-protein interactions characterized by dynamic light scattering[J]. Biophys J, 2010, 98(2):297-304. [16] Dandliker WB, Feigen GA. Quantification of the antigen-antibody reaction by the polarization of fluorescence[J]. Biochem Biophys Res Commun, 1961, 5:299-304. [17] Lea WA, Simeonov A. Fluorescence polarization assays in small molecule screening[J]. Expert Opin Drug Discov, 2011, 6(1):17-32. [18] Baksh MM, Kussrow AK, Mileni M, et al. Label-free quantification of membrane-ligand interactions using backscattering interferometry[J]. Nat Biotechnol, 2011, 29(4):357-360. [19] Zillner K, Jerabek-Willemsen M, Duhr S, et al. Microscale thermop-horesis as a sensitive method to quantify protein:nucleic acid inter-actions in solution[J]. Methods Mol Biol, 2012, 815:241-252. [20] Seidel SA, Wienken CJ, Geissler S, et al. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding[J]. Angew Chem Int Ed Engl, 2012, 51(42):10656-10659. [21] Seidel SA, Dijkman PM, Lea WA, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions[J]. Methods, 2013, 59(3):301-315. [22] Jerabek-Willemsen M, Andr T, Wanner R, et al. MicroScale Thermophoresis:Interaction analysis and beyond[J]. Journal of Molecular Structure, 2014, 1077:101-113. [23] Kawahashi Y, Doi N, Takashima H, et al. In vitro protein microarrays for detecting protein-protein interactions:application of a new method for fluorescence labeling of proteins[J]. Proteomics, 2003, 3(7):1236-1243. [24] Hohsaka T, Abe R, Shiraga K, et al. Incorporation of fluorescently labeled nonnatural amino acids into proteins in an E. coli in vitro translation system[J]. Nucleic Acids Res Suppl, 2003(3):271-272. [25] Serwa R, Wilkening I, Del Signore G, et al. Chemoselective Staudinger-phosphitereaction of azides for the phosphorylation of proteins[J]. Angew Chem Int Ed Engl, 2009, 48(44):8234-8239. [26] Baaske P, Wienken CJ, Reineck P, et al. Optical thermophoresis for quantifying the buffer dependence of aptamer binding[J]. Angew Chem Int Ed Engl, 2010, 49(12):2238-2241. [27] Wienken CJ, Baaske P, Duhr S, et al. Thermophoretic melting curves quantify theconformation and stability of RNA and DNA[J]. Nucleic Acids Res, 2011, 39(8):e52. [28] Martin D, Charpilienne A, Parent A, et al. The rotavirus nonstructural protein NSP5 coordinates a[2Fe-2S]iron-sulfur cluster that modulates interaction to RNA[J]. FASEB J, 2013, 27(3):1074-1083. [29] Pham TH, Minderjahn J, Schmidl C, et al. Mechanisms of in vivo binding site selectionof the hematopoietic master transcription factor PU. 1[J]. Nucleic Acids Res, 2013, 41(13):6391-6402. [30] Keren-Kaplan T, Attali I, Estrin M, et al. Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding[J]. EMBO J, 2013, 32(4):538-551. [31] Uzarska MA, Dutkiewicz R, Freibert SA, et al. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation[J]. Mol Biol Cell, 2013, 24(12):1830-1841. [32] Immekus F, Barandun LJ, Betz M, et al. Launching spiking ligands into a protein-proteininterface:a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme[J]. ACS Chem Biol, 2013, 8(6):1163-1178. [33] Shang X, Marchioni F, Evelyn CR, et al. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors[J]. Proc Natl Acad Sci USA, 2013, 110(8):3155-3160. [34] 宋水山. N-酰基高丝氨酸内酯介导的细菌与其真核寄主之间的信息交流[J]. 中国细胞生物学学报, 2010(2):331-335. [35] Van Den Bogaart G, Meyenberg K, Diederichsen U, et al. Phosphatidylinositol 4, 5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold[J]. Journal of Biological Chemistry, 2012, 287(20):16447-16453. |